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Abstract
We adopt an approach known as bright spots analysis to identify U.S. regions with surprisingly
high corn yields given regional expectations, seasonal weather, and soil characteristics. These
counties are regional ‘surprises’ that, by definition, achieve unexpectedly high levels of agricultural
productivity. We then use multinomial logistic regression to identify the actionable factors—or the
factors over which agricultural stakeholders can exert a certain level of control—that most strongly
predict whether a county is a bright spot. We find that farmers in surprisingly productive regions
spend an average of $17.6 more per acre on fertilizer, $12.4 more per acre on labor, irrigate 12%
more of operated land, and receive $6.6 more per acre from government programs than those
cultivating in less productive regions. We conclude by questioning whether and to what extent
these attributes of productive regions can be managed for a sustainable future.

1. Introduction

Nearly 40% of global land is devoted to food pro-
duction (Ramankutty et al 2008, Foley et al 2011).
In the U.S., this number rises to 55%, with two-
thirds of all cropland cultivated with corn, wheat,
or soy (Bigelow & Bourchers, 2017; USDA Nass
2019). The yields of these crops have climbed con-
sistently in recent decades, thanks largely to tech-
nological innovation—particularly genetic improve-
ments (Cooper et al 2014)—and an increased reliance
on off-farm inputs (Mulvaney et al 2009, Pimentel
and Burgess 2014, Burchfield, Matthews-Pennanen,
Schoof, & Lant, 2019). At the same time, real farmer
incomes have declined (Mishra and Sandretto 2002,
Parton et al 2007), farm debt has increased (Key
2019), and environmental externalities linked to agri-
cultural intensification have grown (Cardinale et al
2012, Tscharntke et al 2012). These challenges will
likely be exacerbated by a rapidly changing climate
(Schlenker and Roberts 2009, Romero-Lankao et al
2014, Zhao et al 2017) and an estimated doub-
ling of global food demand by 2050 (Ray et al
2013, Valin et al 2014). For agricultural systems
to thrive in the future, they must meet human
demand while also sustaining the environmental

resource base and farmer livelihoods (NRC 2010).
The future of agriculture, therefore, lies in identify-
ing the attributes of highly productive agricultural
systems and questioning whether and to what extent
these attributes can be managed for a sustainable
future.

We employ bright spots analysis to locate U.S.
counties where the yields of corn—the most widely
cultivated crop in the U.S.—are surprisingly higher
than expected given regional expectations, seasonal
weather, and soil suitability. Unlike traditional out-
lier analysis, this approach locates regions that devi-
ate strongly fromexpectations given a set of conditions.
These counties are regional ‘surprises’ that, by defin-
ition, achieve unexpectedly high levels of agricul-
tural productivity. We then use multinomial logistic
regression to identify the actionable factors—or the
factors over which agricultural stakeholders can exert
a certain level of control—that most strongly pre-
dict whether a county is a bright spot. In surprisingly
productive regions, we observe higher rates of fertil-
izer expense, labor expense, irrigation use, and finan-
cial support from federal programs. We conclude by
questioning whether and to what extent these correl-
ates of productivity can be managed for a sustainable
future.
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Figure 1. Land Resource Region boundaries and average corn yield (bushels per acre) recorded in USDA Census years between
1997 and 2017. Note that the Florida Subtropical Fruit, Truck Crop, and Range Region (6) and the Northwestern Forest, Forage,
and Specialty Crop Region (13) were dropped from the models as less than ten county-year yield observations were available over
the period of interest for these regions.

2. Methods

2.1. Bright spot identification
We generated yield expectations at two spa-
tial scales—the U.S. county and the National
Conservation Service’s Land Resource Regions (fig-
ure 1)—by constructing a null model with random
effects at both scales and nonactionable factors known
to affect agricultural productivity over which farmers
have little control. These nonactionable factors con-
sisted of three indicators of seasonal weather exposure
and one soil suitability indicator. The three county-
level indicators of seasonal weather exposure—
growing degree days (GDDs), stress degree days
(SDDs), and total precipitation (TP)—were con-
structed from gridded daily four-kilometer temper-
ature and precipitation data provided by the PRISM
Climate Group for each year included in the analysis.
To align daily gridded weather data with county-
level yield data, we computed the average daily max-
imum temperature and precipitation in each county
and then summed these daily values for all days in
the growing season—defined using the spatially-
explicit growing season planting and harvesting dates
provided by Ramankutty et al (2008). To compute
GDDs—an indicator of cumulative temperature
exposure—we summed maximum daily temperat-
ures within a crop-specific tolerance range (10 ◦C
to 30 ◦C for corn) over the growing season for each
county in the coterminous U.S. (Cross and Zuber
1972). To model the effects of heat stress on plant

growth (Schlenker and Roberts 2009, Lobell et al
2013, Schauberger et al 2017, Burchfield et al 2019),
we also included a metric of seasonal heat exposure
called SDDs which measures the total accumulated
daily degrees above the maximum GDD threshold
temperature (30 ◦C for corn). To control for the
effects of seasonal precipitation on yields, we com-
puted TP, or the sum of precipitation (in millimeters)
throughout the growing season.

In addition to these seasonal weather indicat-
ors, we extracted to the county level an indicator
of the suitability of a region’s soils to the cultiva-
tion of corn provided by the gSSURGO dataset, the
highest accuracy and finest spatial resolution dataset
available for U.S. soils (Soil Survey Staff 2019). This
indicator, the National Commodity Crop Productiv-
ity Index (NCCPI), integrates soil chemical proper-
ties (e.g. pH, cation exchange capacity, organic mat-
ter, adverse chemical properties in the root zone), soil
water properties (e.g. available water-holding capa-
city, precipitation recharge, water table recharge), soil
physical properties (e.g. bulk density, soil depth),
soil climate properties (e.g. frost-free days, precip-
itation), soil landscape properties (e.g. slope, depth
to water table during growth season), and other
soil properties (e.g. surface rock fragments, erosion)
to generate a ‘corn productivity score’ that ranges
from 0.01 (low productivity) to 0.99 (high productiv-
ity) (Dobos et al 2012). To align this gridded data-
set with the county-level yield data, we computed
the average productivity score of the subset of only
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a county’s agricultural lands to the cultivation of
corn. We measured corn productivity using county-
level yield estimates (bushels/acre) provided by the
USDA NASS Survey. The final null panel includes
only counties reporting more than two years of corn
yields (n = 1896 counties) over recent USDA Census
year: 1997, 2002, 2007, 2012, and 2017.

Despite the importance of irrigation in explain-
ing yield variability, we did not include it as a pre-
dictor in the null model because data suggests that
irrigation rates have changed considerably in many
counties over the last 20 years. For this reason,we con-
sider irrigation to be an actionable factor and include
it in the attribute analysis described below. To test
the sensitivity of our results to this assumption, we
ran null models including irrigated extent which pro-
duced similar seasonal weather response curves and
bright and dark spots (SI table 8 available online at
stacks.iop.org/ERL/15/104019/mmedia).

Our null model is specified as:

ytcr ∼ N
(
µtcr,σ

2
)

µtcr = β0cr + f(Xtc)+β1SOILtc +β2TIMEt

β0cr = γ00r + u0cr + v0cr

γ00r = b000 + v00r

where t indexes time, c indexes counties, and r indexes
regions. To account for strong spatial autocorrela-
tion in the county yield data, county-level random
effects (β0cr) are modeled using a Besag-York-Mollie
(BYM) spatial dependency model that includes both
random effects (v0cr) and county-level intrinsic con-
ditional autoregressive (iCAR) structured residuals
between counties (u0cr). This approach accounts for
both random variation in yield across counties and
the fact that observations from neighboring counties
exhibit higher correlation than more distant regions
(Morris et al 2019). The county-level random effects
(v0cr) capture time-invariant factors associated with a
county that influence yield and serve as the basis for
our identification of bright spots.

In addition to the county-level effects, we estim-
ated random effects (iid) for each Land Resource
Region which define regional yield expectations
(v00r). We focused on regional expectations rather
than national expectations because of the tremendous
variability in agricultural systemcharacteristics across
the U.S. This approach also allows us to identify the
most deviant counties in a region given null model
covariates while shrinking counties to the regional
means (Gelman andHill 2007, Cinner et al 2016).We
tested the sensitivity of our models to other regional
definitions including U.S. state boundaries, U.S. EPA
Level II Ecoregions, and national average yield and

found the null model using Land Resource Regions to
consistently be the best performing model (SI tables
6 and 7).

To capture well-established non-linearities in the
effects of seasonal precipitation and temperature
on yields (Schlenker and Roberts 2009, Lobell et al
2013), we modeled the interactions between yields
and county-year seasonal weather predictors (GDDs,
SDDs, TP) using a first-order random walk function,
f(Xtc). This structure allows the effect of these pre-
dictors to vary non-linearly while also accounting for
autocorrelation in predictors effects. To avoid overfit-
ting, we modeled soil suitability as a county-level lin-
ear control, SOILtc. We also included a dummy indic-
ator for year (TIMEt) to capture any dynamics that
affect all counties in a particular year such as major
market or policy changes.

The final null model uses uninformative (reduced
precision) prior distributions for linear effects and
penalized complexity priors for non-linear seasonal
weather predictors. The penalized complexity priors
employ a scaling factor to specify priors based on
reasonable limits of the data (Simpson et al 2014).
We employed default and recommended settings for
penalized complexity priors as provided by Simpson
et al (2014). Model fit was evaluated using the devi-
ance information criterion, the conditional predict-
ive ordinate, the predictive probability integral trans-
form, posterior predictive p-values, mean squared
error (MSE) and Bayesian R-squared (R2) (Gelman
and Hill 2007, Blangiardo and Cameletti 2015, Gel-
man et al 2017). All models were estimated using the
R-INLA package (Rue et al 2009) in R (R Core Team
2019). Model scripts and additional information on
model diagnostics and robustness checks are available
at https://github.com/eburchfield/Bright_spots.

Following Cinner et al (2016), we defined bright
and dark spots as the counties in which county-scale
random effects (u0cr + v0cr) differed by more than
1.5 standard deviations from their regional expected
value (v00r). For a county c belonging to a region r:

BSc = |v00r − (u0cr + v0cr)|
> 1.5[sdc′∈r(v00r − (u0c′r + v0c′r))].

County-level bright and dark spots are, therefore,
counties that, given the null model covariates, deviate
from regional yield expectations significantlymore or
less than other counties deviate from their regional
expectations over the five years included in our
analysis.

2.2. Bright spot attributes
Though these nonactionable factors strongly influ-
ence where and how farmers cultivate different
crops, there are many other actionable factors act-
ively managed by humans to create or support desir-
able cultivation conditions. These include the use of
on-farm inputs, participation in federal programs,
farm characteristics, and land use decisions (figure
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Table 1. Variable descriptions.

Variable Description and measurement

Hierarchical model predictors
Soil suitability National Commodity Crop Productivity Index (NCCPI) from the gSSURGO dataset (USDA

NRCS Soil Survey Staff, Natural Resources Conservation Service 2019).
Growing degree days Cumulative seasonal exposure to temperatures beneficial to corn production (between 10 and

30 ˚C).
Stress degree days Cumulative seasonal exposure to temperatures detrimental to corn production (above 30 ˚C).
Total precipitation Cumulative seasonal precipitation in millimeters.
Farm characteristics
Age Average age of primary producer; measured as average years across a county’s primary

producers.
% females Percentage of agricultural acres operated by female primary producers; measured as the

number of agricultural acres operated by female primary producers and standardized by the
total number of agricultural acres operated, per county.

% owners Percentage of agricultural acres operated by full owners (producers who operate only land
they own); measured as the number of agricultural acres operated by full owners and stand-
ardized by the total number of agricultural acres operated, per county.

% tenants Percentage of agricultural acres operated by tenants (producers who operate land they rent
from others and/or land they worked on shares for others); measured as the number of
agricultural acres operated by tenants and standardized by the total number of agricultural
acres operated, per county. % partial owners not included in the model.

Farm inputs
Fertilizer Total expense of fertilizers, including lime and soil conditioners, rock phosphate and gypsum,

and the cost of custom application, per agricultural acre; measured as total expense in USD $
and standardized by the total number of agricultural acres operated, per county.

Irrigation Percentage of agricultural land in every county utilizing irrigation (includes all land irrigated
by artificial/controlled means, including lagoon wastewater distributed by sprinkler or flood
system); measured as the number of agricultural acres irrigated and standardized by the total
number of agricultural acres operated, per county.

Labor Total expense of all laborers, per agricultural acre; measured as the total expense of laborers
(hired, contract, and migrant) in USD $ and standardized by the total number of agricultural
acres operated, per county.

Machinery Total asset value of agricultural machinery, per agricultural acre; measured as total machinery
assets in USD $ and standardized by the total number of agricultural acres operated, per
county.

Financial Support
Gvt. Receipts Total cash receipts of government programs, per agricultural acre; measured in USD $ and

standardized by the total number of agricultural acres operated, per county.a

Land use
% corn Percentage of total harvested acres in corn; measured as total harvested corn acres and

standardized by total harvested cropland acres.
% cropland Percentage of land in a county dedicated to cropland; measured as total acres cropland

(includes crop failure, cultivated summer fallow, idle land, harvested cropland, and cropland
used only for pasture) and standardized by the total number of acres in a county.

% pasture Percentage of land in a county dedicated to pasture; measured as total acres pasture (excluding
pastured cropland) and standardized by the total number of acres in a county.

Edge density A measure of landscape configuration; measured as the sum of all edges (in meters per hectare)
of a given class in relation to the landscape area. ED equals 0 if only one patch is present and
increases, without limit, as the landscape becomes patchier (Mcgarigal et al 2012).

Largest patch index A measure of landscape dominance; measured as the percentage of the total landscape covered
by the largest patch of the corresponding patch type. LPI approaches 0 when the largest patch
is small and equals 100 when only one patch-class is present (Mcgarigal and Marks 1995;
Mcgarigal et al 2012).

aThis category consists of direct payments from the government and includes: payments from Conservation Reserve Program, Wetlands

Reserve Program, Farmable Wetlands Program, and Conservation Reserve Enhancement Program; loan deficiency payments; disaster

payments; other conservation programs; and all other federal farm programs under which payments were made directly to farm

operators. Commodity Credit Corporation (CCC) proceeds, local and state government agricultural program payments, and federal

crop insurance payments are not tabulated in this category (USDA NASS 2019, p. 759).

(Continued)
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Table 1. (Continued).

Variable Description and measurement

Interspersion &
Juxtaposition

A measure of landscape aggregation and distribution; measured as a percentage of the
maximum possible. IJI ranges from 0 when a patch type is adjacent to only one other
patch-class (patch types are poorly interspersed/there is a disproportionate distribution of
patch type adjacencies) and 100 when a patch is adjacent to all patch-class types (patch types
are well interspersed/equally adjacent to each other) (Mcgarigal and Marks 1995; Mcgarigal
et al 2012).

Richness A measure of landscape diversity; measured as the number of unique land use categories in
a county. Richness approaches 1 when only one patch is present in a large landscape and
increases, without limit, as the number of unique land uses increases, and the landscape area
decreases (Mcgarigal et al 2012).

2). Perhaps the most important of these actionable
factors are on-farm inputs. Over the period from
1960 to 2018, application rates of synthetic nitrogen
fertilizer across the U.S. increased from 17.0 to 83.6
pounds per acre/year (USEPA 2018). Over the same
period, pesticide expenditures experienced a fivefold
increase, with recent annual U.S. expenditures over
$12 billion (Fernandez-Cornejo et al 2014). Corn has
been the top pesticide-using crop in the U.S. since
the 1970s; today, over 90% of U.S. corn is treated
with pesticides (Fernandez-Cornejo et al 2014). Irrig-
ation is another crucial input to production, with
irrigated land in the U.S. increasing from 37 mil-
lion acres in the 1960s to 55.9 million acres in 2018.
Today, irrigated acreage comprises 28% of all harves-
ted cropland and generates roughly half of the total
value of U.S. crop sales (USDA ERS 2019). Over the
last century, farms have also become far less reliant
on physical labor as an input to production, largely
due to the rapid advances inmechanization (Mazoyer
and Roudart 2017). On-farm labor has decreased
from 9.93 million farmworkers in 1950 to 2.31 mil-
lion farmworkers in 2019 (USDA ERSa 2020; USBLS,
2019). Financial support for agricultural production
through direct payments from federal programs to
farmers has also increased in recent decades (Annan
and Schlenker 2015), providing an important source
of income stabilization and financial incentive for
retiring land from production for many farmers. In
addition to on-farm inputs and financial support,
farm characteristics influence the on-farm adop-
tion of new technologies and practices that influence
agricultural yields. For example, research suggests
that the adoption of agricultural best management
practices increases as farmer age decreases (Prokopy
et al 2008), rates of tenancy decrease (Soule et al
2000), and access to education and extension increase
(Baumgart-Getz et al 2012); however, the direction
of these effects is not always clear, and often con-
tradictory across analyses (Knowler and Bradshaw
2007). Though farmer characteristics such as age and

gender are not directly actionable by farmers, policies
and programs can target specific groups of farmers
to increase access to information or to support their
production.

Finally, changes in land use can alter the pro-
visioning of ecosystem services essential to agri-
cultural production (Shackelford et al 2013, Duarte
et al 2018). Increased configurational and compos-
itional complexity of an agricultural landscape is
associated with greater pollinator movement and
plant reproduction (Hass et al, 2018; Garibaldi et al
2011), bird and arthropod diversity (Fahrig et al
2015, Sirami et al 2019), water quality (Gergel et al
2002), and higher yields (Burchfield et al 2019).
Though individual farmers may not have the capa-
city to manage these landscape dynamics, shifts
in regional agricultural policy and markets can
shape the crops that are cultivated and the ways in
which land is managed (Boody et al 2005); there-
fore, we designate these landscape characteristics as
actionable.

To assess the contribution of these actionable
factors to agricultural production, we constructed a
panel dataset describing the agricultural and land
use characteristics of corn-producing counties in the
coterminousU.S. in recentUSDACensus years (1997,
2002, 2007, 2012, 2017). The USDA Agricultural
Census is administered every five years to all farms
and ranches selling at least $1000 of their products
and is the only source of detailed county-level U.S.
agricultural data that is collected, tabulated, and pub-
lished using a consistent methodology that covers
the coterminous U.S. Our analyses are limited to the
actionable factors for which more than 80% of data
was available for the county-years of interest. This
excluded interesting variables (e.g. crop insurance
payments and on-farm experience), but was neces-
sary formodeling purposes. The final set of predictors
we compiled from the USDA Census included avail-
able data describing farm and farmer characterist-
ics (age, sex, and land tenure), farm inputs (fertilizer
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Figure 2. Environmental and social correlates of agricultural production. Correlates deemed nonactionable are shown in orange;
actionable correlates are shown in blue.

expense,1 labor expense, andmachinery costs), finan-
cial support (direct receipts from federal programs),
and land use (percent agricultural land in corn pro-
duction, percent county land in pasture or crop-
land) (figure 2). Given the growing body of literature
indicating that shifts in land use can affect agricul-
tural productivity, largely through the provisioning
of ecosystem services, we also constructed additional
indicators of land use from the USDA Cropland Data
Layer–a 30-meter annual land use dataset based on
satellite imagery and extensive ground truth data.
In addition to the compositional indicators extrac-
ted from the USDA Census, we constructed indicat-
ors of land use diversity (Richness, or the number of
distinct land use categories in a county) and dom-
inance (Largest Patch Index, or the percent of the
total landscape covered by the largest patch in the
county). We focus on these indicators of composition
to contribute to debates in the literature on the role
of landscape specialization to agricultural productiv-
ity (Abson et al 2013, Davis et al 2012; Hass et al,
2018, Landis 2017). Our previous research also indic-
ates that high levels of land use diversity are associ-
ated with high yields of corn, wheat, and soy (Burch-
field et al 2019), which challenges the association
between specialized and simplified landscapes and

1We initially included both an indicator of fertilizer and chemical
use but found the two predictors to be collinear at 0.78, suggest-
ing that farmers who apply fertilizer are also highly likely to apply
chemicals (insecticides, herbicides, fungicides, and other pesti-
cides). We tested model sensitivity to inclusion of both predictors
and found the effect size and direction of the predictor to be sim-
ilar across models, so we have only included fertilizer use in the
final model.

productivity (Key 2019). In addition to these indic-
ators of landscape composition (percent corn, percent
cropland, percent pasture, richness, and largest patch
index), we also include two commonly used indic-
ators of landscape configuration: an indicator of the
distribution of different land use categories across
a landscape (Interspersion and Juxtaposition Index)
and an indicator of the patchiness of a landscape
(Edge Density). Managing for configurational com-
plexity, where fine-grained agricultural landscapes
are well connected to surrounding habitats, has been
shown to enhance natural enemies (Haan et al 2020)
and increase yields in conventional systems (Martin
et al 2016).

We used multinomial logistic regressions to
estimate the effect of predictors on a county’s
membership in the bright or dark spot categor-
ies as compared to the average category. This
approach allows the predictors to affect member-
ship in each category differently. While this explor-
atory approach does not imply that these correl-
ates have a direct and causal effect on yield, it does
provide an indication of the characteristics typ-
ical of highly productive regions, allowing us to
identify the characteristics of places that defy expect-
ations and to discuss whether and to what extent
these attributes can be managed for a sustainable
future.

The analysis was performed in R using the nnet
package (Venables and Ripley 2002) to compute the
log-odds of a county in the average reference cat-
egory changingmembership to either a bright or dark
spot category as a function of farm characteristics,
farm inputs, and land use. We standardized predict-
ors (where applicable) to facilitate comparison across
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Figure 3. Location of 109 bright spots (green) and 108 dark spots (blue) derived from the hierarchical model.

counties using ‘total operated acres’ which includes
agricultural land used for crops, pasture, or graz-
ing, as well as woodlands, farm roads, and farm
buildings (USDANASS 2019). All covariates included
in the final models had correlation coefficients less
than 0.7 and variance inflation factor scores less
than 5.

3. Results

Our model identifies 109 bright spots clustered in
the heart of the Corn Belt, in southwestern Georgia,
in the Texas Panhandle, and along the Lower Missis-
sippi (figure 3; SI table 9). These are counties whose
corn yields—as compared to regional expectations—
are unexpectedly high (bright spot) or low (dark spot).
Bright spots are clustered in the heart of the Corn
Belt in western Illinois and parts of Iowa, as well as
in southwestern Georgia, around the Oklahoma Pan-
handle, and along the Mississippi River in Arkan-
sas and Louisiana. Dark spots are found along the
periphery of the Corn Belt—in southeastern Kansas
through northern Missouri, northern Michigan, and
across the Dakotas. We also see a cluster of dark spots
in northern Michigan and in central Virginia—areas
where relatively little corn is grown (figure 3; SI table
10).

Table 2 presents the regression coefficients for
fixed effects in the hierarchical model. These results
indicate that the majority of U.S. corn yield variabil-
ity is explained by differences in soil and climate (R2

of 0.72; SI tables 3 and 4). For example, a one stand-
ard deviation increase in soil suitability is associated
with a corn yield increase 12.4 bu ac–1 (table 2).

Table 2. Regression coefficients for fixed effects in the hierarchical
model. Soil suitability was standardized prior to analysis, so the
effect reported below is based on a one standard deviation
increase in soil suitability. The baseline year in the model is 1997.

Variable Mean St. Dev.
0.025

quantile
0.975

quantile

Intercept 96.83 9.34 78.49 115.16
Soil
suitab-
ility

12.37 0.76 10.88 13.86

Year 2002 6.35 0.70 4.97 7.72
Year 2007 22.31 0.71 20.92 23.70
Year 2012 21.42 0.75 19.95 22.90
Year 2017 43.65 0.68 42.33 44.98

A one standard deviation increase in seasonal GDD
exposure from average exposure rates (approxim-
ately 580 GDDs) is associated with a yield increase of
25 bu ac−1 (figure 4(a)), while increased exposure to
seasonal temperature stress of 150 stress degree days is
associated with a decrease in yields of 15 bu ac−1 (fig-
ure 4(b)). Corn yields are less responsive to changes
in total precipitation (figure 4(c)), which reflects the
importance of irrigation in mitigating the effects of
precipitation variability on corn production (Cooper
et al 2020). These results correspond with existing
research finding that seasonal weather variability
explains up to 70% of yield variability (Ray et al
2012, 2015, Liang et al 2017), that corn yields drop
sharply when temperatures exceed 30 ◦C (Schlenker
and Roberts 2009, Lobell et al 2013, Schauberger et al
2017, Messina et al 2019), and that soil suitability is a
major determinant of productivity (Kravchenko and
Bullock 2000).
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Figure 4. The non-linear response (first-order random walk) of corn yields (bushels per acre) to seasonal weather covariates in
the hierarchical model. Solid lines show the median effect and shaded bands the 95% credibility limits.

We predict membership in one of three categories
(bright, average, or dark) using the variables described
in table 1 with multinomial logistic regression ana-
lysis. Our model performs well on held-out data, cor-
rectly predicting 89% of the cases (n = 8650 county-
years, McFadden’s pseudo R2 0.23). Results are robust
to shifts in the threshold we used to define bright
spots (SI figures 4 and 5). Predictors were scaled prior
to analysis, so the effects presented in figure 5 and
table 3 are the relative risk ratios associated with a one
standard deviation increase in each covariate. Keep-
ing all other variables constant, variables with relat-
ive risk ratios less than one are more likely to shift
towards the average category as the value of the vari-
able increases; conversely, variables with relative risk
ratios greater than one are more likely to shift to the
bright (figure 5(a)) or dark (figure 5(b)) categories as
the value of the variable increases. In what follows, we
focus on the attributes with relative risk ratios greater
than one, as these attributes are most likely to push a
county out of the average category towards classifica-
tion as a bright or dark spot.

The results of the multinomial logistic regression
indicate that, after controlling for regional expecta-
tions, seasonal weather, and soil suitability, unexpec-
tedly high yields are found in regions with higher
levels of farm inputs (fertilizer, irrigation, labor) and
financial support (government receipts) to produc-
tion. For example, a one standard deviation increase
in dollars spent on fertilizer ($26.34 per acre) is asso-
ciated with an increase in the likelihood of a county
being classified as bright by 35%. Increasing irrig-
ated acreage by 13% increases the likelihood of a
county being classified as bright by nearly 40%. A
one standard deviation increase in dollars spent on
labor ($73.01 per acre) or dollars received from gov-
ernment programs ($8.58 per acre) increases the like-
lihood of a county being classified as bright by 14%
and 23% respectively. Surprisingly, as the asset value
of machinery per acre increases, a county is more
likely to be classified as average as compared to bright.
Changes in land use have a mixed effect on the

likelihood of a county being classified as bright. First,
our findings suggest that surprisingly productive agri-
cultural regions are also those with higher levels of
land use specialization. Bright counties are associated
with a higher percent of acres cultivated with corn
(% corn) and lower levels of land use diversity (Rich-
ness), counter to findings by Burchfield et al (2019)
that high levels of diversity are associated with higher
corn yields. A county is also less likely to be classified
as dark if it is dominated by a single land use category
(Largest Patch Index). While compositional diversity
may not be associated with surprisingly productive
regions, we find that as there is a greater distribu-
tion of land use categories in a landscape, i.e. a higher
probability that different land use categories will be
located close to one another (IJI), counties are more
likely to be classified as bright. This may imply that it
is not total land use diversity (Richness), but themix-
ing of diverse land use categories across the landscape
that is associated with higher yielding regions. This is
also supported by the finding that increased landscape
patchiness (Edge Density) decreases the likelihood of
a county being classified as dark. Finally, farmer char-
acteristics (age, sex) do not have a clear effect on the
likelihood of a county being classified as bright, sug-
gesting that what a farmer does matters more than
who a farmer is.

4. Discussion

While unsurprising (see for example, Liang et al 2017,
Ray et al 2015, or Lobell and Gourdji 2012), our find-
ing that seasonal weather and soil explainmuch of the
variability in U.S. corn production highlights the role
that nonactionable factors play in driving yield variab-
ility. Though seasonal weather and soil did not show
significant changes over our period of interest (SI fig-
ure 1), these nonactionable factors are likely to change
in the future as climate change brings more frequent
extreme heat events, daily precipitation extremes, and
more intense droughts over most of North America
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Table 3.Multinomial logistic regression results presented as
relative risk ratios. Our model performs well on held-out data,
correctly predicting 89% of the cases (n= 8650 county-years,
McFadden’s pseudo R2 of 0.23). Predictors were scaled prior to
analysis, so the effects presented are the relative risk ratios
associated with a one standard deviation increase in each
covariate (see SI table 2 for descriptive statistics).

Dependent variable

Bright Dark

Farm characteristics
Age 1.083 0.938

(0.081) (0.079)
% females 0.998 0.962

(0.071) (0.071)

% owners 1.019 0.671
∗∗∗

(0.104) (0.073)

% tenants 1.117
∗

0.545
∗∗∗

(0.073) (0.066)
Farm inputs
Fertilizer ($/acre) 1.346

∗∗∗
0.820

(0.133) (0.124)

Irrigation (%) 1.393
∗∗∗

0.739
∗

(0.075) (0.114)

Labor ($/acre) 1.139
∗∗

0.967
(0.069) (0.100)

Machinery ($/acre) 0.536
∗∗∗

1.162
(0.068) (0.140)

Financial Support
Gvt. programs ($/op-
eration)

1.235
∗∗∗

1.033

(0.090) (0.105)
Land use
% corn 1.310

∗∗∗
0.408

∗∗∗

(0.092) (0.041)

% cropland 0.652
∗∗∗

0.732
∗∗

(0.076) (0.091)
% pasture 1.046 1.011

(0.091) (0.090)
Landscape
Edge density 0.964 0.780

∗∗

(0.104) (0.082)

Largest patch index 0.914 0.730
∗∗∗

(0.086) (0.064)

Interspersion & juxta-
position

1.226
∗∗∗

1.082

(0.094) (0.081)

Richness 0.717
∗∗∗

0.963
(0.055) (0.090)

Constant 0.052
∗∗∗

0.035
∗∗∗

(0.004) (0.003)

Note:
∗
p < 0.1,

∗∗
p < 0.05,

∗∗∗
p < 0.01

(Romero-Lankao et al 2014) and as agricultural mis-
management exacerbates soil quality declines already
observed across many regions of the U.S. (Stavi and
Lal 2015). While many regions stand to benefit from
these changes, particularly the warming of the north-
ern U.S. (Lant et al 2016, Burchfield et al 2019), these
changes in soil and climate will alter where and how
we grow corn in the future, with profound implica-
tions for agricultural livelihoods (Sleeter et al 2012,

Sohl et al 2012, Lant et al 2016). Given these prob-
able changes in climate and soil, we have conduc-
ted exploratory analyses to identify the attributes of
U.S. counties that have shown surprisingly high levels
of productivity in recent years. While our analyses
are correlative not causal, they provide preliminary
evidence for the management practices, farm charac-
teristics, and land use contexts associated with U.S.
counties that have achieved surprisingly high yields—
given local climate and soil dynamics—allowing us to
discuss the extent to which these correlates of pro-
ductivity can continue to be managed for a sustain-
able future.

One of the strongest predictors of whether a
county is classified as bright is fertilizer use. Over
the years included in our analysis, farmers cultivat-
ing in bright counties spent an average of $38.5 per
acre on fertilizer as compared to $20.9 per acre in
dark counties (figure 6(a)). Chemical application—
though not included in our analysis due to its high
collinearity with fertilizer use—is also consistently
higher in bright counties, with average spending of
$26.2 per acre in bright counties as compared to
$13.1 in dark counties (figure 6(b)). Farmers in bright
counties also have greater machinery assets (figure
6(g)) and spendmore on labor (figure 6(h)).Mechan-
ical technology innovations have contributed widely
to agricultural productivity in the U.S., significantly
reducing the need for on-farm labor (USDA ERSa
2020). At the same time, the supply of farm labor
has declined and the cost of labor increased, encour-
aging farmers to grow less labor-intensive crops while
investing in labor-saving technologies and increas-
ing labor productivity (Zahniser et al 2018). Given
our findings that investing more in labor increases
the likelihood of a county being classified as bright
and investing more in machinery makes a county
more likely to be classified as average as compared
to bright, we suggest that more research invest-
igating the nuanced links and feedbacks between
labor, machinery, and productivity is necessary in the
future. Finally, many of the counties with surprisingly
high corn yields also have high rates of irrigation, with
an average irrigation rate of 14.7% in bright counties
as compared to only 2.6% in dark counties (figure
6(c)).

Whether these high rates of input use can mitig-
ate projected changes in climate and soil is unclear.
On the one hand, these are important means of rep-
licating ideal cultivation conditions in regions that
are not particularly well-suited to the cultivation of
a specific crop. On the other hand, there are sig-
nificant environmental implications of this reliance
on external inputs, particularly their negative influ-
ence on the nonactionable factors—soil suitability
and climate—that drive much of yield variability in
the U.S. For example, though fertilizer application
is an important means of boosting agricultural pro-
ductivity, its overuse is associated with a number
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Figure 5. Relative risk ratios associated with a county moving from (a) average to bright or from (b) average to dark. Points are the
risk ratios associated with membership in bright or dark spot categories as compared to the baseline average category and lines
represent the 95% confidence intervals for these estimates. Keeping all other variables constant, variables with relative risk ratios
greater than one are more likely to shift to the bright (figure 5(a)) or dark (figure 5(b)) categories as the variable increases, while
variables with relative risk ratios less than one are more likely to shift towards the average category as the variable increases.

of social and environmental externalities including
eutrophication and hypoxia (Van Meter et al 2018),
biodiversity loss (Mozumder and Berrens 2007), soil
chemical and biological degradation (Mulvaney et al
2009, Stavi and Lal 2015), and human infections and
diseases (Horrigan et al 2002). Of particular concern
is the contribution of increased fertilizer use to global
emissions of nitrous oxide (N2O), a greenhouse gas
whose global warming potential is nearly 300 times
that of CO2 (Davidson 2009, Park et al 2012, Fu
et al 2017). These emissions exacerbate global climate
change, further deteriorating the climatic conditions
on which successful corn cultivation depends (Pinder
et al 2012). Similarly, irrigation allows agricultural
systems to achieve higher yields than could be sup-
ported by the natural environment alone; however,
inmany regions, irrigation rates are rapidly exceeding
sustainable limits, raising questions about their capa-
city to continue to support high levels of productiv-
ity into the future. For example, the bright counties
in the Texas Panhandle withdraw groundwater from
the Ogallala Aquifer, in which up to 24% of irrig-
ated area may be lost this century (Deines et al 2019).
The cluster of bright counties in eastern Arkansas—
a region that has seen a remarkable expansion of
irrigated area in recent decades—withdraws from an
aquifer currently classified as ‘critical’ due to signific-
ant groundwater declines and water quality degrad-
ation (Vories and Evett 2014). In the Lower Missis-
sippi River Valley—where we find a large concen-
tration of bright spots—aquifer levels have declined
by an average of 370 million cubic meters per year

over the last 25 years (Kebede et al 2014). Both the
Southeast and the Midsouth are expected to see an
increase in the prevalence and severity of drought in
the future, exacerbating water stress in these regions
(Mearns et al 2003, Strzepek et al 2010).

In addition to the environmental implications
of high input use, increased use of inputs may also
have implications for agricultural livelihoods. Per
farm average expenditures reached over $176 000
in 2017; labor, machinery, fertilizer, and chemicals
together comprise over 30% of these expenses (USDA
NASS 2018). Over the period covered in this study,
farmer debt also increased by 60% from $241 bil-
lion (inflation adjusted USD$) in 1997 to $390 bil-
lion in 2017—levels not seen since the 1980s farm
crisis (USDA ERSc 2020). Over the same period,
median farm income has declined, with 2019 net
farm income nearly 36% below its peak of $136.5
billion in 2013 (USDA ERSb 2020). While our data
shows that farmers in bright counties earn more in
terms of income and crop sales than those cultiv-
ating in dark counties (figures 6(i)–(j)), we do not
have data describing differences in farmer debt across
these two groups. In addition, more farmers cul-
tivated as tenants in bright counties than in dark.
Given that bright spots are defined by high corn
yields, the higher rates of tenancy emphasize the need
to understand landowner-tenant relationships and
on-farm decision-making (Perry-Hill and Prokopy
2014, Ulrich-Schad et al 2016, Ranjan et al 2019). If,
for example, land renters are more concerned about
short-term profitability than long-term land value,
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Figure 6. Box and whisker plot showing differences in physical and financial inputs across bright spots and dark spots. Bold
horizontal lines represent the median. We include an indicator of chemical application (insecticides, herbicides, fungicides,
pesticides, and the cost of application) not included in the formal analysis due to high collinearity with fertilizer use. We also
include indicators of participation in specific government programs excluded from formal analysis due to limited data availability
over our period of study. Due to data availability issues, 1997 was not included in these figures.

and are tasked almost exclusively with management
decision-making, renters may prioritize high yields
at the expense of the long-term sustainability of the
lands they lease (Rogers 1991, Soule et al 2000).

Based on these results and the literature on the
potential environmental and livelihood impacts of
mismanagement of these inputs, we argue that one
of the most important areas for sustainable change in
U.S. corn production is to increase the efficiency with
which current inputs, particularly fertilizer and irrig-
ation water, are applied. Though agricultural total
factor productivity (TFP) growth has been signific-
ant over the last decades, gains have been biased
by technologies that are land- and labor-saving, but
input-intensive (Coomes et al 2019; USDA ERSd
2020). Though results from this study cannot speak
to input-use efficiency directly, it remains that agri-
cultural inputs are often not applied efficiently. For

instance, an estimated 65% of farming operations
do not follow best management practices for fertil-
izer application (Ribaudo et al 2011), with fertilizer
often applied in excess of crop requirements (Ladha
et al 2005). This decreases soil productivity over
time, increasing farmer reliance on synthetic fertil-
izers (Mulvaney et al 2009). Similarly, in many of the
water-stressed aquifers that supply irrigation water
to bright spots, water is applied inefficiently, fur-
ther depleting water supplies and raising energy costs
for producers (Kebede et al 2014). Significant effi-
ciency gains can be made by promoting information-
intensive—rather than input-intensive—innovations
in U.S. agriculture (Fuglie 2018, Burchfield et al
2020). Advances in precision agriculture includ-
ing the use of Global Positioning Systems, weather
prediction, satellite imagery, and drones to tar-
get inputs like fertilizer, pesticides, and irrigation

11



Environ. Res. Lett. 15 (2020) 104019 E K Burchfield and B L Schumacher

water can significantly increase resource use efficiency
(Bongiovanni and Lowenberg-Deboer 2004). Genetic
innovations designed to mitigate climate, soil, and
pest variability have already generated significant
efficiency gains (Tester and Langridge 2010, Cooper
et al 2014, Khatodia et al 2016, Mueller et al 2019,
Messina et al 2020). These innovations in technology,
coupled with ecosystem-based approaches (e.g. crop
rotation, integrated crop-livestock systems) to TFP
growth, have the potential to enhance agricultural
sustainability (Coomes et al 2019).

In addition to higher rates of input use, we also
find that farmers cultivating in bright counties receive
nearly double the government receipts as those
cultivating in dark counties ($15.5 per acre versus
$8.9 per acre respectively). This variable includes
payments for farmer participation in conservation
programs, loan deficiency payments, disaster pay-
ments and ‘all other federal farm programs under
which payments were made directly to farm oper-
ators’ (USDA NASS 2019, p. 759). Due to high
rates of missing data, we were unable to formally
assess the interactions between farmer participation
in specific programs and corn productivity; however,
we compare available data across bright and dark
counties in figures 6(d)–(f). Participation in federal
crop insurance programs has increased consistently
through time, reflecting national trends (Annan and
Schlenker 2015)—with higher participation rates in
bright counties than dark counties. Federal programs
are an important source of income stabilization for
U.S. farmers; however, participation in these pro-
grams is governed by policies that often promote spe-
cialization, influencing what, where, and how food
is produced (Reganold et al 2011) with implications
for farm-level adaptive capacity and resource use. For
example, an increased participation in federal crop
insurance programs is associated with a decrease in
adoption of adaptive practices meant to mitigate the
negative yield impacts of changing climate (Annan
and Schlenker 2015), reduced on-farm diversification
(Di Falco and Perrings 2005, O’Donoghue et al 2009),
the cultivation ofmore water-intensive crops (Deryu-
gina and Konar 2017), and the expansion of corn pro-
duction into regions poorly suited to its cultivation
(Olson 2001, Mcgranahan et al 2013). Though par-
ticipation in federal conservation and wetland pro-
grams is low, the higher rates of participation in
bright counties merit further exploration. In addition
to preserving important ecosystems, participation in
these programs has been shown to boost ecosystem
services for agriculture while supplementing farmer
income (Gleason et al 2008, Morefield et al 2016).

Changes in land use have a mixed effect on
the likelihood of a county being classified as bright.
Our results indicate that surprisingly productive
regions are those with higher levels of land use
specialization (lower Richness, higher percent cul-
tivated in corn, lower Largest Patch Index). At the

same time, however, we find that counties with more
complex configurations (higher edge density, higher
Interspersion and Juxtaposition) are more likely to be
bright or average as compared to dark. The differ-
ent ways in which landscape composition and con-
figuration interact with yield suggest that there may
be ways in which agricultural stakeholders can man-
age entire landscapes to support agricultural produc-
tion. This aligns with published research suggesting
that managing agricultural lands to support the pro-
visioning of ecosystem services essential to agricul-
tural production can increase both ecosystem health
and yields (Shackelford et al 2013, Duarte et al 2018);
however,more research is needed to assess the specific
ways in which shifting land use affects production
and input use (Burchfield et al 2019). We note, addi-
tionally, that there are many well-established agri-
cultural practices farmers can employ to manage for
ecosystem services that we were unable to include
in our analysis due to limited data availability. For
example, setting aside even a small portion of agricul-
tural land to natural cover has been found to boost
ecosystem services essential to agricultural produc-
tion (e.g. increased pollinator abundance, improv-
ing water quality, and controlling soil erosion) while
maintaining yields (Schulte et al 2017). Agricultural
practices like this, that bothmaintain yields and pro-
mote environmental outcomes, must be included in
future analyses (once data is available at U.S. scales) to
further understand sustainability as it relates to man-
agement practices and agricultural outcomes (e.g.
yields) in the U.S.

5. Conclusion

For our food production systems to thrive in the
future, they must meet human demand while also
sustaining the environmental resource base and
providing economically viable options for farm-
ers (NRC 2010). We have identified surprisingly
productive regions of the U.S., identified the shared
attributes of these regions, and questioned the overall
sustainability of these attributes. Rather than identi-
fying the highest or lowest yielding places in the U.S.,
we identify places that defy expectations to uncover
potential actionable levers to boost agricultural sus-
tainability. This exploratory hypothesis-generating
expedition both highlights the extent to which non-
actionable climatic and edaphic factors explain yield
variability and identifies the major correlates of pro-
ductivity: high levels of input use, land use specializ-
ation, and government support. These correlates, in
turn, affect the environmental conditions that ulti-
mately define agricultural productivity.

We conclude by emphasizing the importance of
future work exploring agricultural bright spots to
generate novel insights and new hypotheses about
sustainable solutions to the complex problems facing
U.S. agriculture (Bennet et al 2016). We propose
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future research in bright counties where relatively
few inputs are used. Bright areas reporting low rates
of fertilizer use—located primarily in Texas and
Oklahoma (SI figure 6)—and low irrigation rates—
located in western Illinois, parts of the Great Plains,
and throughout Texas (SI figure 7)—are areas that
achieve surprisingly high yields without heavy use of
fertilizer and irrigationwater. Future research in these
areas can merge the ‘big data’ presented in this ana-
lysis with ‘deep data’ describing the intersecting social
and ecological dynamics that allow farmers to achieve
high yields in surprising contexts.
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