
ACCEPTED MANUSCRIPT • OPEN ACCESS

Agricultural yield geographies in the United States
To cite this article before publication: Emily K. Burchfield et al 2021 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/abe88d

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 The Author(s). Published by IOP Publishing Ltd.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 71.204.24.240 on 25/02/2021 at 20:09

https://doi.org/10.1088/1748-9326/abe88d
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/1748-9326/abe88d


1 
 

Agricultural yield geographies in the United States  1 
Emily K. Burchfielda,* and Katherine S. Nelsonb 2 
*Corresponding author 3 
 4 
a. Assistant Professor, Department of Environmental Sciences, Emory University, 400 Dowman 5 
Drive, Atlanta GA  30322, USA. Phone: (404)727-0463, Email: emily.burchfield@emory.edu, 6 
OrcidID: 0000-0003-0459-6270 7 
b. Assistant Professor, Department of Geography and Geospatial Sciences, Kansas State University, 8 
920 N. 17th Street, Manhattan, KS, USA. Phone: (785)532-6727, Email: ksnelson@ksu.edu, 9 
OrcidID: 0000-0002-4240-5474 10 
 11 
Abstract: We examine the geographies of agricultural yields in the United States, home to some of 12 
the most productive agricultural systems on the planet. We model and map yield divergence from 13 
biophysical expectations and regional norms for five major crops—corn, soy, wheat, alfalfa, and 14 
hay—and assess how this divergence interacts with farm-level resources, farm(er) characteristics, and 15 
landscape context. Our results highlight the ways in which human activity has reinforced and 16 
intensified the yield geographies defined by sun, soil, and water alone. Yield gains brought by human 17 
activity are strongly associated with increased expenditure on inputs to production and receipts from 18 
federal programs, but not with net revenue gains for farmers. These yield gains vary across operator 19 
race, gender, farm size, and major U.S. region. We also find that beyond a threshold, increased input 20 
expenditure is associated with marginally decreasing yields, raising important questions about the 21 
interactions between yields and farmer livelihoods. We conclude by discussing the importance of 22 
broadening the production-centric paradigm that has dominated agricultural innovation over the last 23 
century to include the well-being of the farmers and ecological systems on which agricultural 24 
production ultimately depends. 25 
 26 
Significance Statement: For the most widely grown U.S. crops, yield divergence from biophysical 27 
expectations is strongly associated with increased expenditure on inputs to production and receipts 28 
participation in federal programs, but not with net revenue gains for farmers, raising important 29 
questions about the interactions between yields and farmer livelihoods. These yield divergences vary 30 
across operator race, gender, farm size, and major U.S. region. 31 
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Agricultural yield geographies in the United States  1 
 2 
1. Introduction 3 
 Human innovation has pushed agricultural production well beyond the bounds of what sun, 4 
soil, and water alone can support. Over the last 70 years, the U.S. yields of soy and winter wheat 5 
have more than tripled, while corn yields have increased over five-fold 1. These yield gains have 6 
supported a more than tripling of global population and brought tremendous changes to agricultural 7 
systems worldwide. Today, the U.S. is home to some of the most productive, consolidated, and 8 
specialized agricultural systems on the planet. These systems have been strongly shaped by an 9 
economic paradigm that prioritizes production and efficiency, technological innovations that target 10 
simplified large-scale systems2,3, federal policies that incentivize specialized commodity production4,5, 11 
and by the increased integration of rural economies in globalized markets6,7. Today, over half of U.S. 12 
land is devoted to agricultural production, with over 80% of this land cultivated with corn, wheat, 13 
soy, alfalfa, or hay 8. An increasing share of these crops are grown for export, with U.S. farmers 14 
exporting, on average, more than 20% of what they produce1. Moreover, the operations on which 15 
these crops are grown are increasing in size, with large-scale operations earning more than $500,000 16 
annually comprising only 7.5% of U.S. farms but operating over 41% of agricultural land 1,9.  17 
  While there is evidence that large-scale simplified systems do, in fact, generate higher 18 
yields10–12, there is growing concern about the implications of these trends for people and planet. 19 
U.S. farm debt has increased by over 30% in the last decade to levels not seen since the 1980s Farm 20 
Crisis 13. Over the same period, farm income has sharply declined, with the USDA reporting a 21 
median farm income of negative $1,735 in 2018 14. Many families have left the agricultural sector, as a 22 
national trend of farm consolidation has pushed small- and medium-sized farms out of 23 
production2,15,16. Existing farms are increasingly exposed to fluctuations in global markets, often with 24 
devastating consequences 17–19. At the same time, changing climate20–24 and declining environmental 25 
quality25–27 threaten agricultural collapse in many of the same regions. 26 
 With these trends in mind, scientists, practitioners, and policy makers have started to 27 
question the production-centric paradigm that has dominated agricultural innovation over the last 28 
half-century, questioning its viability for the farmers and ecological systems on which agricultural 29 
production ultimately depends 28–30.  If one of the most productive agricultural systems on the planet 30 
is also associated with farmer debt, farm consolidation, declining incomes, and a slew of negative 31 
environmental externalities, is production really the best metric of agricultural “success”?  32 
 We begin to explore this question by identifying the farm-level resources, farm(er) 33 
characteristics, and landscape context of the most productive agricultural systems in the U.S. We 34 
identify unexpectedly high yielding agricultural regions by estimating yield divergence from what 35 
would be expected given only biophysical conditions and regional norms for the five major crops 36 
that comprise nearly 80% of cultivated acreage in the U.S.: corn, soy, wheat, hay, and alfalfa. By 37 
removing yield variance explained by biophysical conditions and regional norms, we isolate the 38 
human yield signal, or the human contribution to yield geographies. We then assess the farm-level 39 
resources, farm(er) characteristics, and landscape context of counties the for which the human yield 40 
signal is particularly strong.  41 
 We find that human activity has intensified and amplified the yield geographies explained by 42 
sun, soil, and water alone. In areas with unexpectedly high yields for these five crops, farmers spend 43 
more on major inputs to production (fertilizer, chemicals, machinery, and labor) and report higher 44 
rates of federal support, both in terms of government receipts and crop insurance. Surprisingly, we 45 
find that, on average, farmers in these unexpectedly high yielding systems do not earn higher net 46 
revenues. We also find that, beyond a threshold, increased input expenditure is associated with 47 
marginally decreasing yields. Taken together, this work suggests that while U.S. agriculture excels at 48 
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meeting human demand, it falls short in satisfying other important objectives. This raises serious 1 
questions about the future viability of U.S. agriculture and highlights the importance of expanding 2 
the production-centric paradigm by reconceptualizing agriculture as a major force for positive, 3 
regenerative change for both people and planet.  4 
 5 
2. Methods 6 
 We constructed panel datasets merging county-level yield estimates from the USDA NASS 7 
Survey with seasonal sun, soil, and water characteristics for U.S. counties cultivating alfalfa, corn, 8 
hay, soy, and (winter) wheat from 2008 to 2018, excluding counties with fewer than three yield 9 
observations over this period. Together, these crops dominate U.S. agriculture, covering 78% of 10 
agricultural land in the U.S. (Figure S10) 8 and representing nearly 60% of crop value produced in 11 
the U.S.32  We constructed two county-season weather indicators—growing degree days and total 12 
precipitation—from gridded daily four-kilometer temperature and precipitation data provided by the 13 
PRISM Climate Group (2004) 33. For each indicator, we defined season duration using the spatially 14 
explicit, crop-specific planting and harvesting dates provided by 34. Growing degree days—an 15 
indicator of cumulative temperature exposure—are the sum of mean daily temperatures above a 16 
crop-specific threshold over the crop’s growing season,1 while total precipitation is the sum of 17 
precipitation (in millimeters) throughout the growing season. We also collected data describing the 18 
percent of a county’s agricultural land irrigated from the USDA NASS 1. When this data was 19 
unavailable, we replaced missing values with linearly interpolated estimates from the MiRAD 20 
project37 standardized by agricultural extent estimates derived from the USDA’s Cropland Data 21 
Layer. We constructed county-level indicators of soil characteristics by averaging at the county scale 22 
four variables in the Harmonized World Soil Database 38: topsoil pH, topsoil organic carbon, topsoil 23 
cation exchange capacity, and topsoil exchangeable sodium percentage. These predictors were 24 
selected from the full HWSD dataset based on their known importance to agricultural production 25 
and their contributions to the prediction of yield in a random forests model (Figure S9).  26 
 To capture well-established non-linearities in the effects of seasonal precipitation and 27 
temperature on yields 39,40, we modeled the interactions between yields and county-year seasonal 28 

weather predictors using a second-order random walk function 𝑓(𝑋𝑡𝑐). This structure allows the 29 
effect of these predictors to vary non-linearly while also accounting for temporal autocorrelation in 30 
predictors effects. To avoid overfitting, we modeled soil parameters and percent irrigated land as 31 

county-level linear controls. We also included a dummy indicator for year (𝑇𝐼𝑀𝐸𝑡) to capture any 32 
dynamics that affect all counties across the country in a particular year such as major market or 33 
policy changes. Any spatial variability in the impact of these shifts is captured in the county-level 34 
random effects described below. 35 
 One of the challenges of modeling county-level agricultural production is strong spatial 36 
dependency in the data, i.e. neighboring counties tend to have similar yields. We address this issue by 37 
modeling county-level random effects using a Besag-York-Mollié model 41 that includes both 38 
county-specific spatially unstructured random effects (modeled as exchangeable) and county-specific 39 
spatially structured effects modeled using a spatial weights matrix linking counties that share borders. 40 

The unstructured random effects (𝑣0𝑐𝑟) capture time-invariant factors associated with a county that 41 

influence yield (individual spice), while the spatially-structured effects (𝑢0𝑐𝑟) account for the fact that 42 
observations from neighboring counties exhibit higher correlation than more distant counties. 43 
Following Cinner et al. (2016), we also include regional random effects for each of the USDA’s nine 44 

Farm Resource Regions (𝑣00𝑟). These regions capture important variability in farm size, farmer 45 

 
1 GDD baseline temperature of 0°C for winter wheat and hay, 10°C for corn and soy and 15°C for alfalfa.35,36 
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demographics, cropping patterns, sociocultural context, land management norms, and market access 1 
across the U.S.42 (Figure S1). By examining county effects in the context of the region in which they 2 
are nested, we can assess yields given the norms of a region. The final model is specified as: 3 
 4 

𝑦𝑡𝑐𝑟~ 𝑁(𝜇𝑡𝑐𝑟, 𝜎2) 5 

𝜇𝑡𝑐𝑟 =  𝑏000 + 𝑣00𝑟 + 𝑢0𝑐𝑟 + 𝑣0𝑐𝑟 +  𝑓(𝑿𝑡𝑐) +  𝛽1𝒁𝒕𝒄 + 𝛽2𝑇𝐼𝑀𝐸𝑡 6 
 7 
where t indexes time, c indexes counties, and r indexes regions. It is the difference between the county-8 

level random effects (𝑢0𝑐𝑟 + 𝑣0𝑐𝑟) and the expected regional yields (𝑣00𝑟) that serves as the basis of 9 
the remaining analyses. This difference can be thought of as the extent to which, given biophysical 10 
conditions, regional norms, and national temporal trends in yield, a county’s yields have diverged 11 
from national averages over the last decade. This approach removes the share of variance explained 12 
by biophysical factors alone, allowing us to assess the characteristics of yield geographies unexplained 13 
by the biophysical. These residual geographies represent the influence of human activities on yield, 14 
which we refer to as the human yield signal. 15 
 We estimated models using the R-INLA package 43 which uses Integrated Nested Laplace 16 

Approximations to increase the computational efficiency of model estimation. The model uses 17 

uninformative (reduced precision) prior distributions for linear effects (𝑍𝑡𝑐) and penalized 18 

complexity priors for non-linear seasonal weather predictors (𝑿𝑡𝑐). We employed default and 19 
recommended settings for penalized complexity priors as provided by Simpson et al. (2014) 44. 20 

Regional effects (𝑣00𝑟) were modeled using a logGamma prior with weakly informative priors. 21 
County-level random effects were modeled with a Besag-Mollie-York model which includes both iid 22 
random effects and Besag spatial effects using R-INLA default priors. Model fit was evaluated using 23 
the deviance information criterion (DIC), the conditional predictive ordinate (CPO), mean squared 24 
error (MSE) and Bayesian R-squared (R2) (Table S1). Model scripts and additional information on 25 
model diagnostics and robustness checks are available at 26 
https://github.com/####/US_production_geographies.   27 
 We collected available data describing farm resources and farm(er) characteristics from the 28 
USDA Agricultural Census. We included only variables with less than 10% missing data for the 29 
period of interest (Census years 2007, 2012, and 2017, Table S3), with the exception of operator 30 
race. 74% and 41% of counties were missing data describing operated acreage by Black and Hispanic 31 
farmers respectively; data were most likely withheld by the USDA NASS to preserve confidentiality 32 
in counties where very few minority operators cultivate. Despite this limitation, we decided to 33 
include these variables in our descriptive assessments due to their growing importance in our 34 
national conversation about diversity and sustainability. We standardized predictors (where 35 
applicable) to facilitate comparison across counties using “total operated acres” which includes 36 
agricultural land used for crops, pasture, or grazing, as well as woodlands, farm roads, and farm 37 
buildings. To model the effect of variability in land use patterns on agricultural production, we also 38 
constructed additional indicators of landscape composition and configuration from the USDA 39 
Cropland Data Layer–a 30-meter annual land use dataset based on satellite imagery and extensive 40 
ground truth data. We include two indicators of landscape composition—an indicator of crop diversity 41 
(Shannon Diversity Index) and a measure of the predominance of undeveloped and uncultivated 42 
landcover classes (Percent Natural Cover)—and two indicators of landscape configuration—an indicator 43 
of largest patch size (Mean Patch Size) and an indicator of the overall patchiness of a landscape 44 
(Edge Density). We compare values of each variable across a gradient of low (-1 sd) to high (+1 sd) 45 
unexpected yields using box and whisker plots. We also assess the contribution of each variable to 46 
the prediction of the human yield signal using a random forests analysis implemented using the 47 
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randomForests package in R 45. Random forests is well-suited to high dimensional, 1 

multicollinear data, and makes no distributional assumptions about the data on which it is trained, 2 
allowing it to handle complex nonlinear interactions among predictors. Though the variable 3 
importance estimates generated by the random forest algorithm do not have causal interpretations, by 4 
ranking the relative contribution of farm-level resources, farm(er) characteristics, and landscape 5 
context to the prediction of yield divergence from expectations, they provide initial insights into the 6 
human factors that may be associated with surprising yields.  7 
 8 
3. Results 9 
 10 
3.1. Biophysical correlates of yield  11 
 Variations in the agricultural yields of corn, soy, wheat, alfalfa, and hay are largely explained 12 
by differences in access to sun, soil, and water (Figure 1, Table S1). Seasonal temperature and 13 
precipitation have strong effects on the yields of all crops, with stronger effects for temperature than 14 
for precipitation (Figure 1A). Beyond a threshold, increasing temperature exposure is associated with 15 
significant yield declines, particularly for corn and soy, corroborating prior research highlighting the 16 
threat posed by global heating 40,46–48. The yields of corn, wheat, and soy also decline above a 17 
seasonal precipitation threshold (Figure 1B), though hay and alfalfa show sustained yield gains across 18 
the range of seasonal precipitation. Though effect strength varies across crops, irrigation and topsoil 19 
pH have consistent positive effects on crop yields (Figure 2A). Finally, the significant effects of year 20 
on yields (Figure 2B) highlights the importance of major shifts in management, technology, markets, 21 
and policies that affect production nationally. These effects are comparable in size to seasonal 22 
weather effects. 23 

 24 

 25 
Figure 1: The crop-specific yield response to (a) seasonal growing degree days and (b) total seasonal 26 
precipitation estimated using a second-order random walk function. Solid lines show the median 27 
effect and shaded bands the 95% credibility limits. Model R2 for each crop above 0.7 with the 28 
exception of hay (Table S1). 29 
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 1 

Figure 2: Regression coefficients for (a) the average effect of linear soil and irrigation predictors on 2 
yields and (b) the average effect of each year on yields. Year effects capture major shifts in 3 
management, technology, markets, and policies that affect production nationally. The points 4 
represent the mean estimate, while the error bars represent the 95% confidence interval. All 5 
continuous variables were standardized prior to running the models, so these effects represent the 6 
standard deviation change in yield associated with a one standard deviation increase in each 7 
predictor. For temporal fixed effects, the baseline year was set to 2008.  8 

 In addition to controlling for county-level variability in biophysical factors, we also include 9 
regional random effects which place county-level yield dynamics in the context of the larger region 10 
in which they are located. This allows us to compute county-level yield expectations given regional 11 
norms, which we define using the USDA Farm Resource Regions.42 We observe higher regional 12 
yield norms in the Midwestern U.S. (Heartland, Mississippi Portal, Southeastern Seaboard, and 13 
Eastern Uplands) and lower yield norms in the Northern Great Plains and Prairie Gateway regions 14 
(Figure S2). 15 
 16 

 17 
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 1 
Figure 3: The human yield signal, or yield geographies unexplained by biophysical conditions (sun, 2 
soil, and climate), national temporal trends, and regional norms. For example, a county with a value 3 
of two has observed yields that—given county-level biophysical conditions, national yield growth, 4 
and regional norms—are two standard deviations above the national average yield. Counties for 5 
which insufficient yield data was available (fewer than three observations through time) are shaded 6 
gray. Panel F shows the average of unexpected yields across crops, weighted by the proportion of a 7 
county’s agricultural land cultivated with each crop and divided by the total proportion of 8 
agricultural land cultivated with the five crops we assess. Farm resource region boundaries are 9 
shown in dark gray. 10 
 11 
 County-level variability in yields unexplained by biophysical conditions, national temporal 12 
trends, and regional norms exhibits a strong spatial structure (Figure 3), confirmed by the 13 

dominance of the spatially-structured component of the county-scale random effects (𝑢0𝑐𝑟) as 14 
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compared to the unstructured component (𝑣0𝑐𝑟) and the presence of strong spatial autocorrelation 1 
in yield divergence from expectations (Table S2). Even after controlling for the biophysical factors 2 
and regional norms that make the Midwestern U.S. particularly well-suited to corn and soy 3 
production, the yields of these crops are significantly higher in the Midwest than expected. Corn, 4 
soy, alfalfa, and hay yields are also unexpectedly high in counties with access to the High Plains 5 
Aquifer. Alfalfa, hay, and winter wheat are particularly productive in the Pacific Northwest, though 6 
with significant intra-regional variability. In Arizona and New Mexico, alfalfa yields are up to five 7 
standard deviations above national averages, even after accounting for regional norms. The 8 
Southeastern U.S. and the region along the Mississippi River show unexpectedly high yields across 9 
all crops, while the northern Great Plains show unexpectedly low yields across crops. We also 10 
compute average unexpected yields across crops, weighted by the proportion of a county’s 11 
agricultural land cultivated with each crop, which deemphasizes high yield estimates in counties 12 
where little of a crop is cultivated (Figure 3F). Once again, the Midwestern and Southeastern U.S. 13 
emerge as unexpectedly productive regions, as well as the Southwestern U.S., though this signal is 14 
largely dominated by highly productive and large-scale alfalfa cultivation. 15 
 16 
3.2. The human yield signal  17 

What factors, beyond the biophysical controls and regional norms included in our models, 18 
might help to explain unexpected yields? To begin to answer this question, we collected and 19 
constructed data describing three categories of human activity known to directly or indirectly 20 
influence yields: farm-level resources, farm and farmer characteristics, and the land use decisions 21 
that shape landscape context (Table S3). Farm-level resources include per acre expenditure on major 22 
inputs to production (machinery, labor, fertilizer, and chemicals) and per acre receipts from federal 23 
programs. These factors bound the seasonal on-farm decisions that have a strong, direct influence 24 
on production. Farm(er) characteristics such as farmer race, gender, experience, tenure, and farm 25 
size can influence access to farm-level resources as well as the adoption of new technologies and 26 
practices that influence production 49,50. Finally, the landscape context in which a farm operates can 27 
strongly influence the provisioning of ecosystem services essential to agricultural production 51–56. 28 
Agricultural activity has dramatically transformed landscapes in many part of the U.S.—today, over 29 
half of U.S. land is devoted to agricultural production 8. Recent research suggests that differences in 30 
the composition—the quantity of land cover categories on a landscape—and configuration—how 31 
these land cover categories are arranged on a landscape—of the landscape in which a farm operates 32 
can have significant impacts on production outcomes 57.  33 

To understand the major components of the human yield signal, we examine how farm-level 34 
resources, farm(er) characteristics, and landscape context vary across counties with unexpectedly 35 
high yields (counties with yields more than one standard deviation above expectations) and 36 
unexpectedly low yields (counties with yields less than one standard deviation below expectations).2  37 
Because these high and low yielding categories are defined by the yields of only five crops—albeit 38 
five crops that comprise nearly 80% of what’s grown in the U.S. and which make up over 80% of 39 
cultivated acreage in over two-thirds of the counties included in this analysis (Figure S10)—we note 40 
that the patterns in these human factors may be influenced by other crops in a county’s cropping 41 
mix. These other crops, however, reported insufficient yields to include in this national analysis. 42 
Though this data availability limits our investigation, several compelling patterns emerge.  43 
 First, in areas of unexpectedly high production for major U.S. crops, farmers spend more, on 44 
average, on major inputs to production (fertilizer, labor, machinery, chemicals) than in low 45 

 
2 We use one standard deviation to have a reasonable sample size, but note that when using two standard deviations, this 
strengthens the differences we describe. We include summaries of average systems (between -1 and +1 SD) in the SI. 
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production areas (Figure 4A). Median fertilizer expense in unexpectedly productive regions was 1 
$27.90 per acre as compared to $7.81 in less productive regions. Median per acre expenditure on 2 
chemicals and machinery in high production areas was $14.86 and $ 389.07 respectively, as 3 
compared to $4.31 and $165.48 per acre in low production areas. This expenditure pattern is 4 
consistent across all crops included in the analysis (Figure S3). Farmers in highly productive regions 5 
also receive over double the receipts from government programs3 than farmers in low production 6 
areas (median values of $10.61 and $5.12 per acre respectively) and, on a per crop basis, have slightly 7 
higher rates of participation in federal crop insurance programs, particularly those cultivating soy 8 
(Figure S3F).    9 
  10 

 11 
Figure 4: Box and whisker plot showing differences in (a) farm-level resources, (b) farm(er) 12 
characteristics, and (c) landscape context in counties where the across-crop weighted average of yield 13 
divergence from expectations is greater than one standard deviation above the mean (+ 1 sd) or one 14 

 
3 This category consists of direct payments from the government and includes: payments from Conservation Reserve Program, 
Wetlands Reserve Program, Farmable Wetlands Program, and Conservation Reserve Enhancement Program; loan deficiency 
payments; disaster payments; other conservation programs; and all other federal farm programs under which payments were made 
directly to farm operators. Commodity Credit Corporation (CCC) proceeds, local and state government agricultural program 
payments, and federal crop insurance payments are not tabulated in this category (USDA NASS, 2019, p. 759).   
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standard deviation below the mean (- 1 sd). Bold vertical lines represent the median. Values are 1 
standardized for comparison. For crop-specific results, see Figure S3. 2 
 3 
 Across the available farm and farmer characteristics we examine, the strongest consistent 4 
association we observe is for farm size (Figure 4B). Surprisingly, larger farms are associated with lower 5 
than expected yields across the five crops included in our analysis (Figure S4D). Median farm size 6 
for farmers in unexpectedly productive counties is 85 acres as compared to 172 acres in less 7 
productive counties. Farmer knowledge—measured as years of farming experience and whether the 8 
principal operator’s primary occupation is farming—as well as the nature of land ownership do not 9 
have strong associations with unexplained yields, with the exception of tenancy, for which a higher 10 
percent of agricultural acreage operated by tenants is associated with noticeably higher yields for soy, 11 
alfalfa, and corn (Figure S4C).  12 
 Another finding that merits further discussion is the interaction between farmer race and 13 
yields. In most regions of the U.S., white farmers operate well over 90% of cultivated land (Figure 14 
S4G and S7C). Despite the systematic underrepresentation of Black farmers in U.S. agriculture, 15 
increased acreage operated by Black farmers is associated with higher than expected yields, 16 
particularly for soy and hay (Figure S4E). Hispanic farmers are slightly more prevalent in areas with 17 
higher alfalfa yields (Figure S4F), while higher rates of female operated acreage are weakly associated 18 
with lower yields (Figure S4H). We note, however, that these findings are tentative given the low 19 
level of data availability for farmer race. 20 
 We find no clear association between indicators of landscape composition (diversity and 21 
percent natural cover), configuration (edge density and mean patch size) and yields (Figure 4C). 22 
Across crops, lower percent natural cover and higher mean patch area (larger contiguous areas of a 23 
single land cover type) are weakly associated with higher production levels (Figure S5).  24 
 We use random forests regression to determine which factors most strongly predict 25 
divergence from yield expectations (Figure 5). While we were unable to investigate racial associations 26 
with yields due to high levels of missing data, we included other available predictors of farm 27 
resources, farm(er) characteristics, and landscape context. We find that fertilizer and chemical 28 
expenses, which have strong positive associations with yield divergence (Figures S3A and S3B, 29 
Figure 4A), are the strongest predictors of yield divergence from expectations. Government receipts 30 
are also strongly predictive of divergence from expectations, also with a strongly positive association 31 
(Figure S3E, Figure 4A). Median farm size is also predictive of unexpected yields, with smaller farm 32 
sizes associated with increased yields (Figure S4D, Figure 4B). Finally, edge density and crop 33 
diversity emerge as landscape characteristics most predictive of unexpected yields, with predictive 34 
strengths similar to those for machinery and labor inputs and stronger than those of farm(er) 35 
characteristics, though the direction of these effects are unclear (Figure S5, Figure 4C). 36 
 37 
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 1 
Figure 5: Variable importance plot showing the percent increase in mean squared error (MSE) 2 
associated with removing each predictor from the model. Model MSE on 25% held-out data was 3 
0.287. Note that we had to exclude race from this analysis due to data availability. Results here 4 
predicting the weighted average of unexpected yields across crops.  5 
  6 
4. Discussion  7 
 Our results reveal several interesting and important patterns in the yield geographies of 8 
major U.S. crops. First, for these five crops, yields that are not explained by differences in sun, soil, 9 
water, and regional norms exhibit a strong spatial structure, highlighting both the importance of 10 
explicitly accounting for spatial structure in yield models and the contribution of the broader context 11 
in which a county operates to agricultural yields. This finding also implies that major shifts in 12 
agricultural yields occur at a scale between U.S. county—the scale at which yields are systematically 13 
reported by the USDA—and USDA Farm Resource Regions. This is supported by the relatively 14 
small effects of Farm Resource Regions on yields (Figure S2), which suggests that yields vary nearly 15 
as much within regions as they do across regions. 16 
 Despite controlling for county-level differences in access to sun, soil, and water, the 17 
geographies presented in Figure 3 reveal yield gradients that strongly follow known ecological and 18 
biophysical boundaries. For example, despite controlling for irrigation in our models, corn, soy, and 19 
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hay show abrupt yield shifts that align strongly with the boundaries of the High Plains Aquifer 1 
(Figure 6). Areas that are characterized by an abundance of surface water resources and highly 2 
suitable soil, such as the Mississippi River Valley, show unexpectedly high yields across all crops, 3 
while areas with more constrained water resources such as the Western U.S. show high yields for 4 
only a limited number of crops. We interpret the persistence of these biophysical signals as the 5 
human amplification of natural patterns of biophysical suitability. Agricultural production expands 6 
and intensifies in regions particularly well-suited to the cultivation of a specific crop 58; increased 7 
agricultural activity further amplifies yield gains, increasing farm-level resources, and reinforcing and 8 
intensifying the suitability geographies defined by sun, soil, and water access.  9 

10 
Figure 6: Yield divergence from expectations in the High Plains Aquifer. 11 
  12 
 This persistent spatial structure also highlights the limits to human amplification of 13 
biophysical suitability. Consider, for example, the regions at the periphery of the Midwestern U.S. 14 
that exhibit lower than expected yields for the two commodities that dominate this region: corn and 15 
soy. Over the last fifty years, the intersecting forces of consumer demand, trade policy, and market 16 
prices have pushed the cultivation of corn and soy beyond the regions that are most biophysically 17 
suited to their cultivation 5,59,60. Since the 1960s, harvested corn and soy acreage has increased by 18 
76%, with corn and soy alone comprising over 56% of harvested cropland in the U.S. 9. 19 
 The second major finding is that farm-level expenditures on fertilizer, chemicals, machinery, 20 
and labor are consistently higher in unexpectedly productive regions of the U.S. This finding is 21 
consistent across all crops and inputs (Figure S3). We estimate that the median total per acre 22 
expense on these inputs is $458 per acre in unexpectedly productive counties, over two times higher 23 
than the $185 per acre spent in low yielding counties. Farmers may benefit from increased input use 24 
if increased input expenditures result in higher yields; however, our comparison of livelihood 25 
indicators available from the USDA suggests that though crop sales are higher in unexpectedly 26 
productive regions, there is no observable difference in net farm income across this yield gradient 27 
(Figure 7A). This finding is consistent across crops—with the exception of soy and, to a lesser 28 
extent, alfalfa (Figure S6B). While this finding may be influenced by other farm activities beyond the 29 
cultivation of the five major crops examined here, such as high value livestock production or 30 
cultivation of high value specialty crops in areas with low crop yields, it nevertheless points to a 31 
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disconnect between increased efforts and expenditures to boost production of the most widely 1 
grown crops in the U.S. and compensation for those efforts. The partial dependence plots from the 2 
random forest regression also suggest that increased input expenditure is associated with diminishing 3 
yield returns (Figure 7B). Only at exceptionally high expenditure rates of around $260 and $217 4 
dollars per acre for fertilizer and chemical expense respectively are increased inputs associated with 5 
higher yields. This merits further exploration, especially given that per farm average expenditures—6 
of which labor, machinery, fertilizer, and chemicals comprise over 30%—reached over $176,000 in 7 
2017 1. These increased expenditures are strongly associated with unprecedented levels of farmer 8 
debt 13 and a nearly 40% drop in net farm income since 2013. 14,59,61  9 

 10 

 11 
 12 

Figure 7: (A) Box and whisker plot showing differences in standardized county-level livelihood 13 
indicators across weighted average yield divergence from expectations. Bold vertical lines represent 14 
the median. Values are standardized for comparison. Here, net farm income is derived by 15 
subtracting total farm expenses from total sales, while total farm income is the average operation-16 
scale income, before taxes and expenses. (B) Partial dependence plots for inputs and government 17 
receipts. Partial dependence is the dependence of the outcome on one predictor after averaging out 18 
the effects of the other predictors in the model, graphically characterizing the relationship between 19 
an individual predictor and the predicted values of yield divergence. 20 
 21 
 Farm-level decisions are strongly bounded by the larger structures, institutions, and policies 22 
that shape U.S. agriculture 5,9. Our results highlight the strong influence of these factors on yield 23 
outcomes across the nation. First, the temporal effects we estimate are comparable in magnitude to 24 
the effects of seasonal weather on yields, highlighting the strong contribution of interannual 25 
variability in markets and policies to yield outcomes. Note, for example, the diverging effects for 26 
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corn and soy over the period from 2010 to 2013—a period of tremendous price volatility for both 1 
crops. Note also, the steady decline in year effects from 2016 to 2018. This period is marked by 2 
geopolitical unpredictability as well as trade wars between the U.S. and China that significantly 3 
strained U.S. commodity exports. We also observe that farmers in unexpectedly productive regions 4 
receive over two times more support from government programs than those cultivating in 5 
unexpectedly low yielding regions. Government receipts are also highly predictive of unexplained 6 
yields (Figure 5), though like physical inputs to production, they show diminishing returns in their 7 
contribution to the prediction of unexpected yields (Figure 7B). The implications of the strong 8 
association between government receipts and high yields are mixed. Federal programs are an 9 
important source of income stabilization for U.S. farmers; however, research suggests that 10 
participation in these programs may have negative implications for farm-level adaptive capacity and 11 
resource use 62–65.  Large farms tend to have greater access to these programs2,4, and while the link 12 
between farm size and yields is mixed11, this finding may highlight that higher-yielding systems are 13 
those that are more likely to have access to and benefit from government support.  14 
 The third major finding is that while there are no clear overall associations between farmer 15 
characteristics and unexplained yields, increased acreage operated by Black farmers is associated with 16 
higher than expected yields for several crops. This is important given the relative challenges Black, 17 
Indigenous, and other farmers of color face in accessing land and capital 66,67 and the ways in which 18 
government programs (strongly associated with higher yields) have been shown to systematically 19 
privilege white farmers 68. Our exploration of available data also highlights the strong spatial 20 
concentration of minority farmers, with Black operators cultivating primarily in the southeastern, 21 
and Hispanic operators in the southwestern U.S. (Figure S7). 22 
 Fourth, and rather surprisingly, larger farms are associated with lower than expected yields. 23 
Over the last decades, the number of small- and mid-sized farms in the U.S. has declined. In 2018, 24 
large-scale farms (sales greater than 500K) covered over 40% of agricultural land but comprised only 25 
7.5% of the total number of farms 1,9. The shift towards large-scale industrial farming is strongly 26 
driven by the assumption that larger farms are more productive 69,70.  Though this assumption has 27 
been widely debated69, recent evidence suggests that in developed economies large farms tend to be 28 
more productive3,10,11. This evidence is particularly strong in grain production, where many recent 29 
technological advances, such as large combine harvesters and precision agricultural technologies, 30 
most strongly benefit large-scale farms 3,11. While we note that while yields (outputs) are distinct 31 
from productivity (the ratio of inputs to outputs), this finding provides some preliminary evidence 32 
that, after controlling for the natural assets of a farm, size may not necessarily bring high yields. 33 
 Finally, though no clear associations between landscape context and yields emerge from 34 
these analyses, for specific crops, counties with larger contiguous areas of the same crop see higher 35 
than expected yields. While this appears to contradict the finding that larger farm operations are 36 
associated with lower than expected yields, it may suggest that it is not the size of the operation but 37 
the extent of specialization within the operation that is associated with yield gains. We also observe 38 
lower than expected yields in areas with greater percent natural cover, though this likely reflects the 39 
fact that areas with more natural cover may also be those that are less well-suited to agricultural 40 
production. Though no major differences emerge across yield divergence from expectations (Figure 41 
4C), edge density and agricultural diversity are strongly predictive of yields. This suggests that 42 
landscape characteristics, though not significantly different across yield divergence from 43 
expectations, still show interesting nonlinear impacts on the prediction of yields after accounting for 44 
other factors. The difference here also highlights how the effects of these landscape characteristics 45 
on yields are likely nonlinear and not fully captured by high to low yield gradient we explore. As 46 
edge density increases, predicted production decreases, suggesting that increased configurational 47 
complexity of a landscape may not necessarily be good for production. Interestingly, the effect of 48 
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crop diversity on production corroborates published research suggesting that diversity, particularly 1 
high levels of diversity, is associated with higher yields 57,71 (Figure S8B). 2 
 3 
5. Conclusions 4 
 Taken together, these results highlight the ways in which human activity has amplified 5 
biophysical suitability signals in the geography of U.S. agricultural production. While unexpectedly 6 
high yields are strongly associated with increased expenditure on major inputs to production and 7 
higher federal support, they are not strongly associated with net revenue gains for farmers. We also 8 
find that beyond a threshold, increased input expenditure is associated with marginally decreasing 9 
returns to production. This provides preliminary evidence that the intensification of agricultural 10 
production in highly suitable areas is not necessarily associated with improvements in net farm 11 
revenues. This raises important questions about the tradeoffs between yields and farm livelihoods. 12 
What are the ultimate goals of agricultural production? Meeting human demand for food, fuel, and 13 
fiber is a must, but what of the livelihoods of the individuals who grow our food? And what of the 14 
environmental base that supports all food production? Our analyses suggest that some of the most 15 
unexpectedly productive regions of the U.S. fail to meet the equally important objectives of 16 
economic viability and environmental sustainability. 17 
 The geographies revealed by these analyses also highlight regions of concern. First, the 18 
strong yield signal in the High Plains Aquifer highlights production intensification brought by heavy 19 
groundwater irrigation. This aquifer is expected to lose an estimated 24% of irrigated area in this 20 
century due to agricultural withdrawals 72, and whether these high yields can be sustained into the 21 
future is currently under debate 20,73,74

. Second, federal support of corn and soy production has 22 
pushed corn and soy production beyond the periphery of the Corn Belt, into regions we find have 23 
lower than expected yield outcomes for these crops (29, 42). This expansion has displaced other 24 
crops that may be better suited to this region and exerted a number of environmental externalities 76–25 
78. While changing climate that will likely increase the biophysical suitability of these peripheral regions 26 
to the cultivation of corn and soy 23,60, the strong market and policy signals driving the expansion of 27 
corn and soy may limit farmer capacity to explore more sustainable alternatives 79. 28 
 Many have argued that meeting projected food demand while also preserving rural 29 
livelihoods and ecological integrity will require a significant reconceptualization of the ultimate goals 30 
of agriculture 80–82

. One such reconceptualization proposed by the USDA defines sustainable 31 
agriculture as an integrated system that satisfies human demand while also enhancing environmental 32 
quality, efficiently using natural resources, supporting farmer livelihoods, and enhancing quality of 33 
life for farmers and society as a whole 83. Our research shows that while U.S. agriculture excels at 34 
meeting human demand, we fall short in satisfying other important objectives, raising serious 35 
concerns about the economic and ecological viability of U.S. agriculture over time. We applaud and 36 
encourage those in the agricultural community who are critically expanding the production-centric 37 
paradigm to reposition agriculture as a force for positive, regenerative change for both people and 38 
planet. We also urge members of the scientific community to continue to reimagine and redefine 39 
agriculture as tool to cultivate socioecological well-being.  40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
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