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Abstract:  The last century has seen a dramatic simplification of global landscapes, driven largely by 17 
the expansion and intensification of agriculture. Landscape simplification has known negative 18 
impacts on ecosystem health and function; however, less is known about how landscape 19 
simplification affects agricultural production. There is mounting field-scale evidence that simplification 20 
can reduce agricultural production by eroding the ecosystem processes on which agricultural systems 21 
depend; however, many of these processes emerge not at the field scale, but from complex 22 
interactions between land use, biophysical context, and human activity at the landscape scale. This 23 
research uses hierarchical Bayesian models to estimate the relationship between landscape-scale 24 
agricultural diversity and the yields of corn, soy, and winter wheat in the coterminous United States. 25 
We find that the yields of corn and winter wheat increase by as much as 20% in highly diversified 26 
agricultural systems. Our findings also indicate that (1) crop production is more responsive to the 27 
number of distinct crop types cultivated on a landscape than their cultivated extent and that (2) 28 
increasing diversity in agricultural systems that are already diverse brings the highest yield gains.  Our 29 
models provide strong evidence at national and regional scales that agricultural diversification—an 30 
intervention with known ecosystem benefits—can increase crop production.  31 
 32 
Highlights: 33 

• The yields of corn and winter wheat increase by as much as 20% in highly diversified 34 
agricultural systems, while soy yields increase by nearly 5%.  35 

• Crop production is more responsive to the number of agricultural land use categories in a 36 
system than the relative cultivated extent of each category.   37 

• Increasing agricultural diversity in systems that are already diverse brings the highest yield 38 
gains.   39 

 40 
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The impact of agricultural landscape diversification on U.S. crop production  48 
 49 
1.0 INTRODUCTION 50 
 51 
 The last century has seen a dramatic simplification of global landscapes, driven largely by the 52 
expansion and intensification of agriculture (Aguilar et al., 2015; Khoury et al., 2016; Landis, 2017).  53 
Agriculture now covers one-third of global land, making it the most significant “engineered 54 
ecosystem” on the planet (Zhang et al., 2007). In the U.S., agriculture accounts for over 50 percent 55 
of total land area (Figure 1) – and over half of this land is cultivated with corn, soy, or wheat 56 
(Bigelow & Burchers, 2012).  Simplified agricultural landscapes with low levels of natural habitat and 57 
plant diversity are optimized for crop production (Meehan et al., 2011, Grab et al. 2018); however, 58 
they are also associated with soil degradation, loss of habitat, reductions in water quality, and loss of 59 
species diversity (Bommarco, Kleijn, & Potts, 2013; Hendrickx et al., 2007; Landis, 2017; McDaniel, 60 
Tiemann, & Grandy, 2014; Tiemann, Grandy, Atkinson, Marin-Spiotta, & McDaniel, 2015; 61 
Tscharntke et al., 2012).  These negative environmental impacts in turn erode the ecosystem 62 
processes essential to crop production such as pollination, pest management, water retention, and 63 
nutrient supply (Swift et al., 2004; Zhang et al., 2007).  This implies that over time agriculturally-64 
driven landscape simplification may diminish agricultural productivity.  65 

 66 
Figure 1:  The proportion of agricultural land use across the U.S. as indicated by the USDA 67 
CropScape dataset (2017).  Dark green indicates a higher intensity of agricultural land use. 68 
 69 
 An axiom of ecology and sustainability science is that diversity increases the health and 70 
function of complex systems (Bommarco et al., 2013; Khoury et al., 2016; Walker et al., 2004). 71 
Evidence from hundreds of experiments confirms that diversity, in and of itself, is essential to 72 



ecosystem productivity (Cardinale et al., 2012, 2006; Hooper et al., 2012; Loreau et al., 2001; Tilman 73 
et al., 2014, 2012). Despite being inextricably linked to ecological systems, agricultural systems are 74 
often purposefully managed to reduce species diversity to increase harvestable yields.  Farmers, who 75 
play a central role in the selection of which species are present on a landscape, are influenced by 76 
policies and institutions endorsing specialization as a tool to increase agricultural productivity 77 
(Nassaur, 2010; Roesch-McNally, Arbuckle, & Tyndall, 2018; Yoshida, Flint, & Dolan, 2018). 78 
Whether this economic assumption aligns with biological reality is highly contested (Cassman, 1999; 79 
Davis et al., 2012; Kremen & Miles, 2012; Reiss & Drinkwater, 2018; Virginia et al., 2018). 80 
 Field-scale experiments suggest that—as in ecological systems—diversity can actually increase 81 
agricultural production (Li et al., 2009; Ojha & Dimov, 2017; Smith, Gross, & Robertson, 2008; 82 
Tscharntke et al., 2005). Smith and colleagues (2008) found that corn yield increases were 100 83 
percent higher in diverse agricultural systems as compared to monoculture systems. Pywell et al. 84 
(2015) and more recently Schulte et al. (2017) found that transforming even a small percentage of 85 
agricultural land to wildlife habitat maintained or improved yields. Several papers have found that 86 
crop diversity is associated with reduced yield volatility over time (Abson, Fraser, & Benton, 2013; 87 
Di Falco & Perrings, 2005; Weigel, Koellner, Poppenborg, & Bogner, 2018). Research suggests that 88 
these yield improvements are driven by the positive impact of diversification on the ecosystem 89 
services essential to crop production, including pest management (Bommarco et al., 2013; Chaplin-90 
Kramer et al., 2011; Gardiner et al., 2009), soil health (McDaniel et al., 2014; Tiemann et al., 2015), 91 
and pollinator diversity (Schulte et al., 2017; Tscharntke et al., 2005).   92 
 Almost all of the existing evidence linking diversity to increased agricultural production is at 93 
the field-scale; however, many of the ecological processes on which agricultural systems depend 94 
emerge not at the field-scale, but from complex interactions between land use, biophysical context, 95 
and human activity at the landscape scale. Landscape composition and configuration have been shown 96 
to affect many of the ecosystem services essential to agriculture, such as water quantity and quality, 97 
pollination, pest regulation, carbon storage, and climate management (Li et al., 2009; Swinton, Lupi, 98 
Robertson, & Hamilton, 2007). In addition, many ecosystem services essential to agriculture such as 99 
pollinator movement and water flow are generated far from the agricultural fields that benefit from 100 
them.  Therefore, field-scale efforts to diversify may be negated by landscape simplification and 101 
conversely, landscape-scale diversification may benefit localized monoculture systems (Tscharntke et 102 
al., 2005). For these reasons and the mounting evidence linking field-scale diversification to 103 
increased ecosystem services and agricultural productivity, we hypothesize that landscapes with 104 
higher levels of agricultural diversity will support more productive agricultural systems. 105 

As agriculture becomes the most widespread use of land on Earth, there is a critical need to 106 
determine how and why agriculturally-driven landscape change affects agricultural production. This 107 
research uses Bayesian hierarchical modeling to estimate the relationship between agricultural 108 
diversity and the yields of corn, soy, and winter wheat in counties across the coterminous United 109 
States while controlling for seasonal climate, spatiotemporal dependencies, and regional factors 110 
known to influence yield.  Our results indicate that agricultural diversity is associated with increased 111 
agricultural productivity and that it is primarily the number of agricultural land use categories, rather 112 
than their relative cultivated extent, that drive these yield gains. Regional variability in our models, 113 
however, highlights the continued importance of local and regional analyses to assess the complex 114 
assemblage of socio-ecological factors that mediate the diversity-productivity relationship across 115 
space and time.  116 
 117 
 118 
 119 
 120 



2.0 METHODS   121 
 122 
2.1 Data 123 

The county-season is the smallest spatiotemporal unit at which public yield data is available 124 
nationally (USDA NASS, 2019); however, land use and weather data are available at much higher 125 
spatiotemporal resolutions.  To resolve this scalar mismatch and preserve as much information as 126 
possible, we constructed county-scale indicators of cumulative seasonal weather exposure from 127 
gridded daily temperature and precipitation data and computed three indicators of county-scale 128 
agricultural diversity from annual 30 meter land use data.  We extracted gridded land use and 129 
weather data to the county scale and merged this data with county-level yield estimates for corn, soy, 130 
and winter wheat for all counties in the conterminous U.S. (n=3108) from 2010 to 2016.  We focus 131 
on corn, soy, and winter wheat because of their importance to the global economy and their 132 
prevalence on U.S. agricultural landscapes. Since the 1960s, harvested soy and corn acreage has 133 
increased by 76 percent (74 million acres), today covering about 90 million and 89 million acres 134 
respectively (Bigelow & Borchers, 2017).  Wheat – including winter, durum, and spring wheat – 135 
comprises the third largest acreage in the U.S. at 46 million acres (Ash et al., 2018). Together, these 136 
crops cover more than 50% of cultivated land in the U.S.   137 
 Agricultural production is influenced by many factors other than land use, the most 138 
important of which is weather. To control for the impact of weather on crop production, we 139 
computed the average county-level temperature and precipitation for each day within a crop’s 140 
spatially varying growing season (Ramankutty, Evan, Monfreda, & Foley, 2008) from four-kilometer 141 
gridded daily weather data provided by the PRISM Climate Group.  From this daily data, we 142 
computed three indicators of seasonal weather: growing degree days (GDDs), stress degree days 143 
(SDDs), and total precipitation (TP).  GDDs measure the accumulated degrees Celsius within a 144 
crop-specific temperature range in which a crop’s growth rate increases (Miller et al., 2001). The 145 
tolerance range for corn and soy is 10–30o C and 0-30o C for winter wheat (Mesonet, 2017; 146 
NDAWN, 2017).  To model the negative effects of extreme temperature on crop production (Lobell 147 
et al., 2013) we included SDDs, which are the total accumulated degrees Celsius above the maximum 148 
GDD temperature threshold. To control for the impact of water availability on yields, we also 149 
computed the TP or the cumulative sum of precipitation in millimeters throughout the growing 150 
season.  151 

We used the USDA NASS Cropland Data Layer (CDL) as our indicator of land use.  This 152 
dataset classifies land use at a 30-meter resolution nationwide from 2008 to 2017 using satellite 153 
imagery and extensive ground truth data.  Using this data, we computed three county-scale 154 
indicators of agricultural diversity: the Shannon Diversity Index, the Simpson Diversity Index, and 155 
Richness. The Shannon Diversity Index (SDI) is a widely-used index of diversity that measures the 156 
proportional abundance of each land use category in a given region (Aguilar et al., 2015; Gustafson, 157 
1998; Turner, 1990).  It incorporates both the number of land use categories and their relative 158 
evenness on the landscape.  The Simpson Diversity Index (SIDI) measures the probability that two 159 
pixels selected at random belong to different land use categories.  The SIDI gives more weight than 160 
the SDI to common land use categories, i.e. rare land use categories will have a smaller effect on 161 
SIDI than SDI.  We also computed richness (RICH), or the number of unique land use categories in 162 
a county.  We extracted each index to the county-scale from the 100+ agricultural land use 163 
categories included in the CDL (see the SI Appendix for the full list of categories). Each index varies 164 
significantly across space, with the Midwestern U.S. generally exhibiting lower diversity than the 165 
Southern and Western U.S. (Figure 2).  By running our models with three commonly-used indices of 166 
diversity, we can both test the sensitivity of our results to different operationalizations of diversity 167 
and assess the extent to which different facets of diversity, e.g. abundance or relative extent, affect 168 



yields. We include two additional spatially- and temporally-varying controls.  The first is an indicator 169 
of the percent of irrigated land in a county extracted from the 250-meter gridded MiRAD dataset 170 
(Pervez & Brown, 2010).  The second is an indicator of the prevalence and importance of a crop to 171 
a county’s agricultural system, calculated as percent of agricultural acreage cultivated with the crop of 172 
interest.  173 

  174 
Table 1:  An overview of agricultural diversity indicators.  175 

Index Formula Definition and advantages 

Shannon Diversity 
Index (SDI) 𝑆𝐷𝐼 =  − ∑ 𝑝𝑖log (𝑝𝑖)

𝑘

𝑖=1

 

A measure of the abundance and evenness of 
land use categories.  This index is sensitive to 
rare land use categories.  Typical values are 
between 1.5 and 3. 

Simpson Diversity 
Index (SIDI) 𝑆𝐼𝐷𝐼 =  

∑𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
 

A measure of the abundance and evenness of 
land use categories.  This index is not sensitive 
to rare land use categories.  Values range from 
0 to 1. 

Richness (RICH) Number of discrete land use 
types 

A measure of the abundance of land use 
categories. 

 176 
 177 
 178 



 179 
Figure 2:  Variations in agricultural diversity as measured by the Shannon Diversity Index (SDI), the 180 
Simpson’s Diversity Index (SIDI), and Richness (RICH) for counties in the conterminous U.S. in 181 
2017. 182 
 183 
2.2 Modeling 184 
 The quantitative modeling in this study builds on work employing advanced statistical 185 
regression of cross-sectional time-series data—also known as panel data—to investigate known 186 
nonlinearities in the relationship between crop production and seasonal weather (Blanc & Schlenker, 187 
2017; Schlenker & Roberts, 2009). Agricultural production is strongly influenced by spatiotemporal 188 
context (Mendelsohn, & Massetti, 2017; Tack, Barkley, & Nalley, 2015); however, agro-climatic 189 
panel models typically employ frequentist statistics for which the incorporation of complex 190 
spatiotemporal dependency structures can be difficult and computationally expensive (Chatzopoulos 191 
& Lippert, 2015; Moore and Lobell, 2015).  We leverage recent advances in Bayesian modeling 192 



(Blangiardo & Cameletti, 2015; Mantovan & Secchi, 2010; Meehan & Gratton, 2016; Nelson & 193 
Burchfield, 2017) to control for the influence of spatiotemporal dependency in our estimation of the 194 
interactions between landscape, seasonal weather, and crop production. In addition to accounting 195 
for spatiotemporal dependencies which might otherwise bias our regression estimates, this approach 196 
has several advantages that are particularly relevant to our focus. First, it facilitates the estimation of 197 
known nonlinearities in the interactions between landscape, yield, and seasonal weather (Blanc & 198 
Schlenker, 2017; Butler & Huybers, 2015; Lobell et al., 2013; Schlenker & Roberts, 2009). Second, it 199 
controls for time-invariant spatially-varying factors (e.g. soil type, topography) and space-invariant 200 
temporally-varying factors (e.g. national policy changes, market variations) that influence yield, 201 
isolating yield variations driven by our variables of interest (Bivand, Gómez-Rubio, & Rue, 2015; 202 
Blangiardo & Cameletti, 2015; Meehan & Gratton, 2016).  Third, this approach flexibly handles 203 
missing yield data by building model estimates using a combination of a specified likelihood 204 
function, specified prior probability distributions, and available data, providing multiple sources of 205 
information from which to build posterior effect estimates (Blangiardo & Cameletti, 2015).   206 

We estimate a log-linear random-effects panel model that includes diversity (D), seasonal 207 
weather controls (GDD, SDD, TP), county-level spatial effects (County), and independent quadratic 208 
time trends for each region (Time) – identified using the Level III ecological regions provided by the 209 
US EPA (Figure 3) – to account for regionally-varying temporal changes that affect yield such as 210 
differences in technology adoption and management changes (Schlenker & Roberts, 2009). 211 

 212 
log(𝑌𝑖𝑒𝑙𝑑)𝑖𝑗𝑡 =  𝑓(𝐷)𝑖𝑡 +  𝑓(𝑇𝑃)𝑖𝑡 + 𝑓(𝐺𝐷𝐷)𝑖𝑡 + 𝑓(𝑆𝐷𝐷)𝑖𝑡 +213 

                               𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑𝑖 + 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝐶𝑟𝑜𝑝𝑖𝑡 +  𝑓(𝐶𝑜𝑢𝑛𝑡𝑦)𝑖 +  𝑓(𝑇𝑖𝑚𝑒)𝑗𝑡  214 

 215 
where i indexes counties, j indexes regions, and t indexes year.  County-level spatial effects (County) 216 
account for time-invariant factors associated with each county that influence yield including soil, 217 
topography, and non-dynamic sociocultural, infrastructure, and institutional factors.  The county-218 
level effects are modeled using a Besag-York-Mollié (BYM) structure which includes both 219 
exchangeable (iid) county random effects as well as conditional autoregressive structured (iCAR) 220 
residuals between counties. This formulation accounts for both random variation in yields across 221 
counties as well as spatial autocorrelation in yields across neighboring counties. Percent_Irrigated and 222 
Percent_Crop are linear controls that indicate the percent of irrigated land in a county and the percent 223 
of the county farmed with the crop of interest in each year, respectively. These controls account for 224 
known county characteristics that are expected to significantly impact yields. While most of the 225 
variance associated with these control variables is captured in the county-level spatial effects these 226 
variables are included as explicit controls in order to reduce chances of omitted variable bias (Blanc 227 
& Schlenker, 2017; Schlenker, Hanemann, & Fisher, 2007). Climate (TP, GDD, SDD) and diversity 228 
predictors (D, which includes SDI, SIDI, and RICH) are modeled using a first-order random-walk 229 
functional form. The random-walk structure allows the effect of these predictors to vary non-linearly 230 
(for example both low precipitation and very high precipitation tend to be associated with low 231 
productivity while moderate levels of precipitation tend to be associated with high productivity) 232 
while also considering that the effect of these predictors will be autocorrelated (e.g. similar values of 233 
TP will have a similar effect on yields). 234 

 235 



 236 
Figure 3: Gray lines indicate the Level III ecological regions (US EPA, 2011) used for the quadratic 237 
time-trends. Colored areas represent the four major regions used in the regional models described in 238 
the Results and Discussion.  239 
 240 
 Our Bayesian models utilize a highly uninformative (reduced precision) prior distribution for 241 
linear effects and employ penalized complexity (PC) priors for the diversity, climate, and spatial 242 
effects (Simpson et al., 2017).  The PC priors employ a scaling factor to specify priors based on 243 
sensible limits of the data (Simpson et al., 2017).  We employed default and recommended settings 244 
for PC priors as provided by Simpson et al. (2017), yielding moderately informative priors.  Model 245 
fit was evaluated using the deviance information criterion (DIC), the conditional predictive ordinate 246 
(CPO), the predictive probability integral transform (PIT), posterior predictive p-values, mean 247 
squared error (MSE) and Bayesian R-squared (R2) (Blangiardo & Cameletti, 2015; Gelman, 248 
Goodrich, Gabry, & Ali, 2017; Gelman, A., Hill, J., 2007).  Cross-validation of final models was 249 
conducted by re-estimating models with ~86% of the observations and comparing model 250 
predictions against the remaining held-out observations using MSE, R2

, and the Nash-Sutcliffe 251 
Efficiency (NSE).  In addition, model robustness checks were conducted to test sensitivity of results 252 
to the presence of control variables, data subsets, and prior specification (Schlenker, Hanemann, & 253 
Fisher, 2007). All models were estimated using the R-INLA package (Rue, Martino & Chopin, 2009) 254 
in R (R Core Team, 2014). Model scripts and additional information on model diagnostics and 255 
robustness checks are provided in the SI Appendix and on GitHub 256 
(https://github.com/eburchfield/Diversity_yield). 257 
 258 
 259 
 260 
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3.0 RESULTS 261 
 262 
 Our results estimate the nonlinear response of the yields of corn, soy, and winter wheat to 263 
changes in agricultural diversity as measured by the Shannon Diversity Index (SDI), Simpsons 264 
Diversity Index (SIDI) and Richness (RICH) (Figure 4). The response curves indicate that the yields 265 
of corn and winter wheat increase by between 5 and 20% respectively at high levels of agricultural 266 
diversity, which equates to approximately 22-33 bushels per acre for corn (~1,381 to 2,071 kg/ha) 267 
and 9-14 bushels per acre for winter wheat (~605 to 942 kg/ha). Soy is less responsive to 268 
agricultural diversity, with yield gains between 0 and 5% (up to 2.2 bushels per acre or ~148 kg/ha) 269 
at high levels of diversity.  This aligns with published research showing that soy is less responsive to 270 
agricultural diversification (Smith et al., 2008) and changes in tillage and weather variability (Gaudin 271 
et al., 2015). Our results also indicate that the yields of corn and winter wheat are more responsive 272 
to SDI and RICH (Figure 4A and 4C) than SIDI (Figure 4B). These effects are detected after 273 
controlling for seasonal weather, county-level spatial effects, regional time trends, cultivated extent, 274 
irrigated extent, and spatial dependencies in the data. Table 2 shows high model fit across crops and 275 
diversity indices with posterior predictive and cross-validation R2 values of more than 0.7 for all 276 
national models. 277 

 278 

 279 
Figure 4:  The impact of agricultural diversity as measured by the Shannon Diversity Index (SDI), 280 
the Simpson Diversity Index (SIDI), and richness (RICH) on yields for corn, soy, and winter wheat 281 
for counties in the coterminous U.S. Solid lines represent the median effect and the shaded bands 282 
represent the 95% credibility limits. Effects on log(yield) as seen in (a), (b), and (c) can be interpreted 283 
as a percent change in the actual yield associated with a specific value of each index. Plots (d), (e), 284 
and (f) shown the expected change in actual yield (bushels per acre).    285 
 286 
Table 2:  Model fit, posterior predictive checks, and cross-validation.  287 

  Corn (n=11,085 county-
years) 

Soy (n=9,825 county-
years) 

Winter Wheat (n=8,003 
county-years) 

  SDI SIDI RICH SDI SIDI RICH SDI SIDI RICH 



P
o

st
er

io
r 

P
re

d
ic

ti
v
e 

C
h

ec
k
s 

MSE 0.0289 0.0289 0.0289 0.0174 0.0174 0.0174 0.0281 0.0281 0.0280 

R2 0.7084 0.7082 0.7080 0.7521 0.7518 0.7522 0.7682 0.7687 0.7692 

C
ro

ss
-

V
al

id
at

io
n

  

R2 0.7397 0.7857 0.7112 0.7331 0.7736 0.7599 0.7362 0.7669 0.7940 

MSE 0.0423 0.0382 0.0413 0.0242 0.0258 0.0246 0.0391 0.0404 0.0404 

    288 
 Our models also produce crop-specific response curves to seasonal weather (Figure 5). 289 
Estimated yield-weather interactions resemble those in the published literature, indicating that more 290 
GDDs increase yields, while higher SDDs decrease yields (Schlenker & Roberts, 2009). The 291 
idealized TP-yield curve is an inverse parabola (Rosenzweig et al., 2014), reflecting damages to crop 292 
production under extremely low and high precipitation conditions. Corn and soy exhibit this 293 
response, while winter wheat yields increase only at high levels of precipitation. This may be 294 
attributable to the fact that unlike corn and soy, which are grown over the summer and harvested in 295 
early fall, winter wheat is planted in the fall and is harvested for grain the following spring. For all 296 
crops, very low seasonal precipitation is associated with higher yields. This may be due to the 297 
relatively short time-frame of our panel (2010-2016) as well as the importance of irrigation as a 298 
buffer against low precipitation over this period. 299 

 300 

 301 



Figure 5:  The response of yields to changes in total seasonal precipitation in millimeters (TP), 302 
growing degree days (GDDs), and stress degree days (SDDs) in degrees Celsius.    303 
 304 
 While the national models control for regional differences, they do not explicitly model the 305 
ways in which these differences influence diversity-production interactions. To assess how the 306 
relationship between agricultural diversity and crop production varies across space, we re-estimated 307 
models in four major regions of the U.S.:  the South, Northeast, Midwest, and Western U.S. (Figure 308 
3). The models suggest that in places where large-scale farming is less common for edaphic, 309 
topographic, cultural, or infrastructural reasons—such as the Southern and Western U.S.—310 
agricultural diversity has a far greater impact on crop production (Figure 6). Midwestern and 311 
Northeastern agricultural systems are relatively insensitive to diversification, while Western systems 312 
show strong and sustained yield responses to all indicators of diversity. The Southern U.S. shows the 313 
most variability across crops, with positive yield responses for corn and soy, and slightly negative 314 
yield responses for winter wheat.   315 

 316 

 317 
Figure 6:  Regional differences in the effect of agricultural diversification on crop production.  318 



 319 
4.0 DISCUSSION  320 
 321 

Our results suggest agricultural diversification can directly benefit agricultural systems.  322 
Yields of corn and winter wheat increase by as much as 20% in highly diversified agricultural 323 
systems, and soy yields increase by nearly 5%. Our findings also indicate that (1) crop production is 324 
more responsive to the number of agricultural land use categories in a region than the relative 325 
cultivated extent of each category and that (2) increasing agricultural diversity in regions that are 326 
already diverse brings the highest yield gains. These results provide strong empirical support for why 327 
we should consider agricultural diversification. In what follows, we discuss how these models can 328 
also give us a better sense of where, when, and how to diversify.  329 
 330 
4.1 Where to diversify?  The importance of regional variability. 331 

We find that agricultural diversification has a stronger impact on corn and winter wheat than 332 
soy nationally, but these effects vary across regions (Figure 6). For example, winter wheat shows 333 
markedly different responses to increased agricultural diversity in the Western and Southern U.S., 334 
while soy – relatively unresponsive to diversification in the national models – shows significant 335 
responses to diversification in the Southern and Northeastern U.S. The regional models highlight 336 
two important findings. First, differences in diversity-productivity curves across crops and indices as 337 
seen in the national models are less significant than differences in diversity-productivity curves 338 
across regions. This suggests that regional factors may play a larger role in moderating the diversity-339 
productivity relationship than crop- and index-specific factors. Second, the regional models 340 
correspond with published literature indicating that the ways in which diversity interacts with crop 341 
production varies significantly across agricultural, climatic, ecological, and socio-cultural contexts 342 
(Balvanera et al., 2006; Loreau et al., 2001; Swift et al., 2004; Tilman et al., 2014; Zak et al., 2003).  343 
The spatial variability of our findings highlights the fundamental challenge of scale in agro-ecological 344 
research. Large scale models, such as those presented in this paper, provide empirical support for 345 
interventions that may sustainably increase agricultural productivity, but are limited in their ability to 346 
provide context-specific recommendations to support agricultural decision-making. Conversely, 347 
field-scale analyses can provide specific recommendations for farmers but are limited in their 348 
generalizability across regions.  349 

Despite regional variability, in very few cases does diversification decrease yields. A shift from 350 
low to moderate levels of agricultural diversity decreases yields for winter wheat (national model); 351 
however, this is only the case for SDI, suggesting that how land uses are partitioned, as opposed to 352 
the number of land uses itself, is driving this effect. Increasing diversification is also associated with 353 
decreased winter wheat yields in the Northeastern and Southern regional models and with decreased 354 
soy yields in the Midwestern regional model, however these decreases are not significant.   355 

 356 
4.2 When to diversify? The importance of contextual variability. 357 
 Our primary objective in modeling yield response to multiple indicators of diversity (SDI, 358 
SIDI, RICH) is to test model sensitivity to operationalizations of diversity; however, model 359 
differences also provide insights into how agricultural systems respond to different facets of 360 
diversity.  Our results indicate that the yields of corn and winter wheat are more responsive to SDI 361 
and RICH (Figure 4A and 4C) than SIDI (Figure 4B). The SIDI is less sensitive than SDI and RICH 362 
to rare land use categories, meaning that a small increase in agricultural diversity in a system 363 
dominated by a single crop will increase both the SDI and RICH much more than the SIDI.  364 
Therefore, the relative responsiveness of corn and winter wheat yields to changes in SDI and RICH 365 
suggests that these crops are more sensitive to the number of distinct crops in a county rather their 366 



relative cultivated extent. This finding merits further exploration, as it indicates that cultivating small 367 
areas of a landscape with a new crop could increase agricultural productivity. 368 
 By estimating non-linearities in the diversity-productivity relationship, we can also identify 369 
the specific ranges of agricultural diversity that have the highest potential impact on crop 370 
production. The linear response of yields to RICH indicates that adding a new crop to an 371 
agricultural system operating at any level of diversity can increase yields; however, the shape of the 372 
SDI and SIDI curves in Figure 4 suggests that increasing agricultural diversity in systems that are 373 
already diverse brings the highest yield gains. For example, increasing SDI from 2 to 3 increases 374 
yields of corn and winter wheat by approximately 10 and 20% respectively. Similarly, increasing 375 
SIDI from 0.9 to 1.0 increases yields of corn and winter wheat by nearly 10%. Yield gains for corn 376 
and soy are much lower when systems move from low to moderate agricultural diversity. In the case 377 
of winter wheat, diversification in this range may actually decrease yields.  We hypothesize that this 378 
is, in part, due to heavy reliance on external mechanized and chemical inputs in specialized 379 
monoculture systems that offset (at least in the short-term) the negative impacts of diversity loss.  380 
 Increasing agricultural diversity in regions that are already diverse has positive effects on 381 
yields of all crops across indicators of diversity and across regions. There is far more variability in 382 
crop response to diversification in systems with low agricultural diversity. These findings emerge 383 
both at the national and regional scales, with the Midwestern U.S.—a region dominated by 384 
monoculture systems—showing weaker yield responses to agricultural diversification than other 385 
regions of the U.S. This illustrates the importance not only of the regional variability discussed 386 
above, but of contextual variability, or the impact of current landscape composition on the 387 
effectiveness of diversification.   388 
 Figure 7 classifies systems in terms of their combined diversity and productivity. Diverse and 389 
productive systems are shown in dark green, while simplified and productive systems—largely 390 
concentrated in the Midwestern U.S.—are shown in dark purple. This figure highlights the 391 
importance of regional variability in diversity-productivity interactions but can also help to target 392 
regions where agricultural diversification may have the highest impact. Given our finding that 393 
agricultural diversification has the highest impact in systems that are already fairly diverse, 394 
diversification efforts targeted in regions of low to moderate agricultural productivity and moderate 395 
to high agricultural diversity (light greens and yellow regions) may have the highest impact. 396 
   397 



 398 
Figure 7: Bivariate choropleth constructed by binning county-level spatial effects and SDI into 399 
thirds. We use the county-level spatial effects from the model described in Section 2.2 run without 400 
diversity predictors as our indicator of yields. These effects capture the average yield in a county 401 
given the non-diversity predictors in our model (seasonal weather, irrigation, and acreage). Regions 402 
in dark green are both highly diverse and highly productive.  Yellow regions are highly diverse, but 403 
low productivity, and purple regions are highly productive but low diversity.  404 
 405 



 Why might simple agricultural systems exhibit a more varied response to diversification than 406 
diverse agricultural systems? Simple agricultural systems, such as the monoculture systems that 407 
dominate much of the Midwestern U.S., tend to be highly specialized, intensively managed, and 408 
heavily reliant on external petro-chemical and mechanical inputs (Altieri, 1999; Foley et al., 2011; 409 
Kremen, Iles, & Bacon, 2012). These systems have some of the highest yields on the planet (USDA-410 
FAS, 2017); however, these yields are not without environmental consequence (Rabalais et al., 2002; 411 
Kremen & Miles, 2012). We hypothesize that benefits from diversification in these systems are 412 
drowned out by the yield gains brought by intensive management. We note that, except in the case 413 
of winter wheat in a subset of models, crop production does not decrease with diversification. In fact, 414 
yield responses to RICH are near-linear in national models and consistently positive in the regional 415 
models across all crops. While we acknowledge the significant cost and barriers to diversification in 416 
monoculture systems (Blesh & Wolf, 2014; Roesch-McNally et al., 2018; Lin, 2011; Roesch-417 
McNally, Arbuckle, & Tyndall, 2018), this result suggests that simple interventions, such as adding a 418 
small area cultivated with a new crop, could significantly increase crop production even in the most 419 
simplified systems.  420 
   421 
4.3 How to diversify?  A landscape “commons” 422 

This investigation of the relationship between agricultural diversity and crop productivity has 423 
important implications for farmers and land managers across the U.S. Our results suggest that by 424 
increasing the compositional heterogeneity of crops within a landscape, farmers can significantly 425 
increase yields. Furthermore, our models suggest that it is the number of crops cultivated rather than 426 
their cultivated extent that can bring greater yield benefits. This suggests that relatively simple 427 
interventions such as adding a new crop cultivated on a small extent could increase agricultural 428 
system productivity. This also implies that a single farmer does not necessarily need to abandon 429 
monoculture to see yield gains; conversely, a diversified farmer may not see gains in productivity 430 
when cultivating in a simplified landscape. These dynamics emphasize the importance of conducting 431 
analyses at a landscape scale and of re-conceptualizing working landscapes, as well as the ecosystem 432 
services they generate, as common pool resources (Ostrom, 1990; Zhang et al., 2007). The benefits 433 
of agricultural diversification flow across property boundaries and associated costs may not be fairly 434 
spread across users. There is a growing need to understand land use diversification beyond 435 
individual farmer decisions and within the feasibility of coordinated landscape management and 436 

connectivity (DeClerck, Estrada-Carmona, Garbach, & Martinez-Salinas, 2015).   437 
 438 
5.0 CONCLUSION 439 
 440 
  Human-induced reductions in diversity have had negative impacts on ecosystem function 441 
comparable to those from elevated carbon dioxide concentrations, nitrogen deposition, fire, and 442 
drought (Hooper et al., 2012; Tilman, Reich, & Isbell, 2012). Agriculture is a significant driver of this 443 
diversity loss and will likely remain as such if current practices persist (Bommarco, Kleijn, & Potts, 444 
2013; Hendrickx et al., 2007; Landis, 2017; McDaniel, Tiemann, & Grandy, 2014; Tiemann, Grandy, 445 
Atkinson, Marin-Spiotta, & McDaniel, 2015; Tscharntke et al., 2012). In this paper, we assess 446 
whether and how increasing agricultural diversity affects agricultural health and productivity. Our 447 
models provide strong evidence at national and regional scales that agricultural diversification—an 448 
intervention with known ecosystem benefits—can increase crop production. This suggests that 449 
agricultural diversification could serve as a key land use strategy to boost agricultural production 450 
while preserving ecosystem function and integrity. These findings are relatively consistent across 451 
crops, indices of diversity, and regions of the U.S. However, these findings do not identify the 452 



specific causal mechanisms underlying the relationship between landscape diversity and crop 453 
production. A limitation of this study is the inability to account for local-scale factors and sub-454 
annual variability such as application of fertilizer and pesticides for which data availability is limited 455 
and natural disaster events (see Figure S1). The regional variability in our models, highlights the 456 
continued importance of local- and meso-scale analyses to assess the complex assemblage of socio-457 
ecological factors that mediate the diversity-productivity relationship across space and time. In 458 
addition, the time frame for which the USDA Cropland Data Layer land use information is available 459 
limits this study to a relatively short window of time, making these model results more sensitive to 460 
annual variation as shown in Figures S2-S4. Additional research is needed to identify the social and 461 
ecological moderators of the diversity-productivity relationship and key barriers to diversification 462 
such as capital and cost, risk perceptions and behavior, market dynamics, institutional constraints, 463 
and changing climate (Burchfield & Poterie, 2018; Di Falco & Perrings, 2005; Roesch-McNally, 464 
Arbuckle, & Tyndall, 2018).  Our hope is that the empirical evidence provided in this paper will 465 
motivate future initiatives to identify these barriers and moderators. 466 
 467 
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